Project description:Total bacterial DNA was isolated from water and sediment samples from a local watershed and 16S rRNA sequences were analyzed using the Illumina MiSeq v3 platform in order to generate snapshots of bacterial community profiles.
Project description:Pristine groundwater is a highly stable environment with microbes adapted to dark, oligotrophic conditions. Input events like heavy rainfalls can introduce excess particulate organic matter including surface-derived microbes into the groundwater, hereby creating a disturbance to the groundwater microbiome. Some of the translocated bacteria are not able to thrive in groundwater and will form necromass. Here, we investigated the effects of necromass addition to the microbial community in fractured bedrock groundwater, using groundwater mesocosms as model systems. We followed the uptake of 13C-labeled necromass by the bacterial and eukaryotic groundwater community quantitatively and over time by employing a combined protein and DNA stable isotope probing approach. Necromass was rapidly depleted in the mesocosms within four days, accompanied by a strong decrease of Shannon diversity and an increase of bacterial 16S rRNA gene copy numbers by one order of magnitude. Species of Flavobacterium, Massilia, Rheinheimera, Rhodoferax and Undibacterium dominated the microbial community within two days and were identified as key players in necromass degradation, based on a 13C incorporation of > 90% in their peptides. Their proteomes showed various uptake and transport related proteins, and many proteins involved in metabolizing amino acids. After four and eight days of incubation, autotrophic and mixotrophic groundwater species of Nitrosomonas, Limnohabitans, Paucibacter and Acidovorax increased in abundance, with a 13C incorporation between 0.5 and 23%. Our data point towards a very fast and exclusive uptake of labeled necromass by a few specialists followed by a concerted action of groundwater microorganisms, including autotrophs presumably fueled by released, reduced nitrogen and sulfur compounds generated during necromass degradation.
Project description:Total bacterial DNA was isolated from water and sediment samples from a local watershed and 16S rRNA sequences were analyzed using the Illumina MiSeq v3 platform in order to generate snapshots of bacterial community profiles. A total of 56 samples were collected that represent water and sediment samples from 14 sample sites over two different time points (November 18 and 25, 2011).
Project description:The characterization of microbial community structure via 16S rRNA gene profiling has been greatly advanced in recent years by the application of amplicon pyrosequencing. The possibility of barcode-tagged sequencing of templates gives the opportunity to massively screen multiple samples from environmental or clinical sources for community details. However, an on-going debate questions the reproducibility and semi-quantitative rigour of pyrotag sequencing and, as in the early days of genetic community fingerprinting, pros and cons are continuously provided. In this study we investigate the reproducibility of bacterial 454 pyrotag sequencing over biological and technical replicates of natural microbiota. Moreover, via quantitatively defined template spiking to the natural community, we explore the potential for recovering specific template ratios within complex microbial communities. For this reason, we pyrotag sequenced three biological replicates of three samples, each belonging from yearly sampling campaigns of sediment from a tar oil contaminated aquifer in Düsseldorf, Germany. Furthermore, we subjected one DNA extract to replicate technical analyses as well as to increasing ratios (0, 0.2, 2 and 20%) of 16S rRNA genes from a pure culture (Aliivibrio fisheri) originally not present in the sample. Unexpectedly, taxa abundances were highly reproducible in our hands, with max standard deviation of ~3% abundance across biological and ~2% for technical replicates. Furthermore, our workflow was also capable of recovering A. fisheri amendmend ratios in reliable amounts (0, 0.29, 3.9 and 23.8%). These results highlight that pyrotag sequencing, if done and evaluated with due caution, has the potential to robustly recapture taxa template abundances within environmental microbial communities. 9 Biological and 3 technical replicates were evaluated, as well as potential to recover qPCR-defined ratios of DNA, in 454 pyrotag sequencing
Project description:To determine whether and how warming affects the functional capacities of the active microbial communities, GeoChip 5.0 microarray was used. Briefly, four fractions of each 13C-straw sample were selected and regarded as representative for the active bacterial community if 16S rRNA genes of the corresponding 12C-straw samples at the same density fraction were close to zero.