Project description:Genome-wide association studies (GWAS) have boosted our knowledge of genetic risk variants in autoimmune diseases (AIDs). Most of the risk variants are located within or near genes with immunological functions, and the majority is found to be non-coding, pointing towards a regulatory role. We have performed a cis expression quantitative trait locus (eQTL) screen to investigate whether single nucleotide polymorphisms (SNPs) associated with AIDs influence gene expression in thymus. Genotyping was performed using the Immunochip and 353 AID associated SNPs were tested against expression of surrounding genes (+/- 1 Mb) from human thymic tissue (N=42). We identified eight genes where the expression was associated with AID risk SNPs at a study-wide level of significance (P < 2.57x10-5). Five genes (FCRL3, RNASET2, C2orf74, SIRPG and SYS1) displayed cis eQTL signals also in other tissues, while for two loci (NPIPB8 and LOC388814), the eQTL signal appear to be thymus-specific. Since many AID risk variants from GWAS have been subsequently fine-mapped in recent Immunochip projects, we explored the overlap between these novel AID risk variants and the thymic eQTL regions. Moreover, we examined the functional annotation of the seven expression altering SNPs (eSNPs). Our study reveals autoimmune risk variants that act as eQTLs in thymus. We have highlighted functional variants within these genetic regions that potentially can represent causal autoimmune risk variants. Total RNA from 42 human thymic samples were obtained from children undergoing cardiac surgery.
Project description:Genetic variants associated with autoimmune diseases are highly enriched within putative cis-regulatory regions of CD4+ T cells, suggesting that they alter disease risk via changes in gene regulation. However, very few genetic variants have been shown to affect T cell gene expression or function. Here, we tested >18,000 autoimmune disease-associated variants for allele-specific expression using massively parallel reporter assays in primary human CD4+ T cells. We find 545 variants that modulate expression in an allele-specific manner (emVars). Primary T cell emVars greatly enrich for probable causal variants, are mediated by common upstream pathways, and their putative target genes are highly enriched within a lymphocyte activation network. Using bulk and single-cell CRISPR-interference screens, we confirm that emVar-containing T cell cis-regulatory elements modulate both known and previously unappreciated target genes that regulate T cell proliferation, providing plausible mechanisms by which these variants alter autoimmune disease risk.
Project description:Genetic variants associated with autoimmune diseases are highly enriched within putative cis-regulatory regions of CD4+ T cells, suggesting that they alter disease risk via changes in gene regulation. However, very few genetic variants have been shown to affect T cell gene expression or function. Here, we tested >18,000 autoimmune disease-associated variants for allele-specific expression using massively parallel reporter assays in primary human CD4+ T cells. We find 545 variants that modulate expression in an allele-specific manner (emVars). Primary T cell emVars greatly enrich for probable causal variants, are mediated by common upstream pathways, and their putative target genes are highly enriched within a lymphocyte activation network. Using bulk and single-cell CRISPR-interference screens, we confirm that emVar-containing T cell cis-regulatory elements modulate both known and previously unappreciated target genes that regulate T cell proliferation, providing plausible mechanisms by which these variants alter autoimmune disease risk.
Project description:Gene expression profiling of immortalized human mesenchymal stem cells with hTERT/E6/E7 transfected MSCs. hTERT may change gene expression in MSCs. Goal was to determine the gene expressions of immortalized MSCs.
Project description:The interplay between environmental and genetic factors plays a key role in the development of many autoimmune diseases. In particular, the Epstein-Barr virus (EBV) is an established contributor to multiple sclerosis, lupus, and other disorders. Previously, we demonstrated that the EBV nuclear antigen 2 (EBNA2) transactivating protein occupies up to half of the risk loci for a set of seven autoimmune disorders. To further examine the mechanistic roles played by EBNA2 at these loci on a genome-wide scale, we globally examined gene expression, chromatin accessibility, chromatin looping, and EBNA2 binding, in a B cell line that was 1) uninfected, 2) infected with a strain of EBV lacking EBNA2, or 3) infected with a strain that expresses EBNA2. We identified >400 EBNA2-dependent differentially expressed human genes and >5,000 EBNA2 binding events in the human genome. ATAC-seq analysis revealed >2,000 regions in the human genome with EBNA2-dependent chromatin accessibility, and HiChIP-seq data revealed >1,700 regions where EBNA2 altered chromatin looping interactions. Importantly, autoimmune genetic risk loci were highly enriched at the sites of these EBNA2-dependent chromatin-altering events. We present examples of autoimmune risk genotype-dependent EBNA2 events, nominating genetic risk mechanisms for autoimmune risk loci such as ZMIZ1. Taken together, our results reveal important interactions between host genetic variation and EBNA2-driven disease mechanisms. Further, our study highlights a critical role for EBNA2 in rewiring human gene regulatory programs through rearrangement of the chromatin landscape and nominates these interactions as components of genetic mechanisms that influence the risk of multiple autoimmune diseases.
Project description:The interplay between environmental and genetic factors plays a key role in the development of many autoimmune diseases. In particular, the Epstein-Barr virus (EBV) is an established contributor to multiple sclerosis, lupus, and other disorders. Previously, we demonstrated that the EBV nuclear antigen 2 (EBNA2) transactivating protein occupies up to half of the risk loci for a set of seven autoimmune disorders. To further examine the mechanistic roles played by EBNA2 at these loci on a genome-wide scale, we globally examined gene expression, chromatin accessibility, chromatin looping, and EBNA2 binding, in a B cell line that was 1) uninfected, 2) infected with a strain of EBV lacking EBNA2, or 3) infected with a strain that expresses EBNA2. We identified >400 EBNA2-dependent differentially expressed human genes and >5,000 EBNA2 binding events in the human genome. ATAC-seq analysis revealed >2,000 regions in the human genome with EBNA2-dependent chromatin accessibility, and HiChIP-seq data revealed >1,700 regions where EBNA2 altered chromatin looping interactions. Importantly, autoimmune genetic risk loci were highly enriched at the sites of these EBNA2-dependent chromatin-altering events. We present examples of autoimmune risk genotype-dependent EBNA2 events, nominating genetic risk mechanisms for autoimmune risk loci such as ZMIZ1. Taken together, our results reveal important interactions between host genetic variation and EBNA2-driven disease mechanisms. Further, our study highlights a critical role for EBNA2 in rewiring human gene regulatory programs through rearrangement of the chromatin landscape and nominates these interactions as components of genetic mechanisms that influence the risk of multiple autoimmune diseases.
Project description:The interplay between environmental and genetic factors plays a key role in the development of many autoimmune diseases. In particular, the Epstein-Barr virus (EBV) is an established contributor to multiple sclerosis, lupus, and other disorders. Previously, we demonstrated that the EBV nuclear antigen 2 (EBNA2) transactivating protein occupies up to half of the risk loci for a set of seven autoimmune disorders. To further examine the mechanistic roles played by EBNA2 at these loci on a genome-wide scale, we globally examined gene expression, chromatin accessibility, chromatin looping, and EBNA2 binding, in a B cell line that was 1) uninfected, 2) infected with a strain of EBV lacking EBNA2, or 3) infected with a strain that expresses EBNA2. We identified >400 EBNA2-dependent differentially expressed human genes and >5,000 EBNA2 binding events in the human genome. ATAC-seq analysis revealed >2,000 regions in the human genome with EBNA2-dependent chromatin accessibility, and HiChIP-seq data revealed >1,700 regions where EBNA2 altered chromatin looping interactions. Importantly, autoimmune genetic risk loci were highly enriched at the sites of these EBNA2-dependent chromatin-altering events. We present examples of autoimmune risk genotype-dependent EBNA2 events, nominating genetic risk mechanisms for autoimmune risk loci such as ZMIZ1. Taken together, our results reveal important interactions between host genetic variation and EBNA2-driven disease mechanisms. Further, our study highlights a critical role for EBNA2 in rewiring human gene regulatory programs through rearrangement of the chromatin landscape and nominates these interactions as components of genetic mechanisms that influence the risk of multiple autoimmune diseases.
Project description:The interplay between environmental and genetic factors plays a key role in the development of many autoimmune diseases. In particular, the Epstein-Barr virus (EBV) is an established contributor to multiple sclerosis, lupus, and other disorders. Previously, we demonstrated that the EBV nuclear antigen 2 (EBNA2) transactivating protein occupies up to half of the risk loci for a set of seven autoimmune disorders. To further examine the mechanistic roles played by EBNA2 at these loci on a genome-wide scale, we globally examined gene expression, chromatin accessibility, chromatin looping, and EBNA2 binding, in a B cell line that was 1) uninfected, 2) infected with a strain of EBV lacking EBNA2, or 3) infected with a strain that expresses EBNA2. We identified >400 EBNA2-dependent differentially expressed human genes and >5,000 EBNA2 binding events in the human genome. ATAC-seq analysis revealed >2,000 regions in the human genome with EBNA2-dependent chromatin accessibility, and HiChIP-seq data revealed >1,700 regions where EBNA2 altered chromatin looping interactions. Importantly, autoimmune genetic risk loci were highly enriched at the sites of these EBNA2-dependent chromatin-altering events. We present examples of autoimmune risk genotype-dependent EBNA2 events, nominating genetic risk mechanisms for autoimmune risk loci such as ZMIZ1. Taken together, our results reveal important interactions between host genetic variation and EBNA2-driven disease mechanisms. Further, our study highlights a critical role for EBNA2 in rewiring human gene regulatory programs through rearrangement of the chromatin landscape and nominates these interactions as components of genetic mechanisms that influence the risk of multiple autoimmune diseases.
Project description:The interplay between environmental and genetic factors plays a key role in the development of many autoimmune diseases. In particular, the Epstein-Barr virus (EBV) is an established contributor to multiple sclerosis, lupus, and other disorders. Previously, we demonstrated that the EBV nuclear antigen 2 (EBNA2) transactivating protein occupies up to half of the risk loci for a set of seven autoimmune disorders. To further examine the mechanistic roles played by EBNA2 at these loci on a genome-wide scale, we globally examined gene expression, chromatin accessibility, chromatin looping, and EBNA2 binding, in a B cell line that was 1) uninfected, 2) infected with a strain of EBV lacking EBNA2, or 3) infected with a strain that expresses EBNA2. We identified >400 EBNA2-dependent differentially expressed human genes and >5,000 EBNA2 binding events in the human genome. ATAC-seq analysis revealed >2,000 regions in the human genome with EBNA2-dependent chromatin accessibility, and HiChIP-seq data revealed >1,700 regions where EBNA2 altered chromatin looping interactions. Importantly, autoimmune genetic risk loci were highly enriched at the sites of these EBNA2-dependent chromatin-altering events. We present examples of autoimmune risk genotype-dependent EBNA2 events, nominating genetic risk mechanisms for autoimmune risk loci such as ZMIZ1. Taken together, our results reveal important interactions between host genetic variation and EBNA2-driven disease mechanisms. Further, our study highlights a critical role for EBNA2 in rewiring human gene regulatory programs through rearrangement of the chromatin landscape and nominates these interactions as components of genetic mechanisms that influence the risk of multiple autoimmune diseases.