Project description:Genistein is one of the flabonoids which is included in high concentration in soy and has a high estrogenic activity. Beneficial effects of estrogen or hormone replacement therapy (HRT) on muscle mass or muscle atrophy have been demonstrated. We investigated the preventive effects and underlying mechanisms of genistein intake on denervation-induced muscle atrophy. Genistein intake significantly suppressed the loss of soleus muscle weight and the denervation-induced up-regulations of FOXO1 protein. The results of a DNA microarray showed that the estrogen receptor (ER) target genes are changed by genistein intake. Genistein suppressed the soleus muscle atrophy, and it was attenuated under the ER antagonist treatment. The administration of an ERα agonist suppressed the denervation-induced muscle atrophy and up-regulation of Atrogin1 gene expression, but the ERβ agonist had no effect.
Project description:We used microarrays to detail the global transcriptional response mediated by ERalpha or ERbeta to the phytoestrogen genistein in the MCF-7 human breast cancer cell model. Experiment Overall Design: MCF-7 human breast cancer cells expressing endogenouse Estrogen Receptor Alpha (ERalpha) were infected with adenovirus carrying either estrogen receptor beta (AdERb) or no insert (Ad) at multiplicity of infection (moi) of 20. Cells were then treated with either vehicle control (veh), 6nM 17beta-estradiol (E2), 6nM genistein (LG), 300nM genistein (HG), 300nM S-Equol (EQ), HG+3uM ICI182,780 (IG), EQ+3uM ICI 182,780(IE) for a additional periods of 4h or 24hr before RNA extraction and hybridization on Affymetrix microarrays. We sought to determine if genistein and S-Equol, phytoestrogens selective for the ERbeta can elicit transcriptional response distinctive from those mediated by the ERalpha.
Project description:Skeletal muscles undergo atrophy in response to denervation and neuromuscular diseases. Understanding the mechanisms by which denervation drives muscle atrophy is crucial for developing therapies against neurogenic muscle atrophy. Here, we identify muscle-secreted fibroblast growth factor 21 (FGF21) as a key inducer of atrophy following muscle denervation. In denervated skeletal muscles, Fgf21 is the most robustly upregulated member of the Fgf family and acts in an autocrine/paracrine manner to promote muscle atrophy. Silencing Fgf21 in muscle prevents denervation-induced muscle wasting by preserving neuromuscular junction (NMJ) innervation. Conversely, forced expression of FGF21 in muscle reduces NMJ innervation, leading to muscle atrophy. Mechanistically, TGFB1 released by denervated fibro-adipogenic progenitors (FAPs) upregulates Fgf21 through the JNK/c-Jun axis. The resulting increase in FGF21 protein reduces the cytoplasmic level of histone deacetylase 4 (HDAC4), culminating in muscle atrophy. HDAC4 knockdown abolishes the atrophy-resistant effects observed in Fgf21-deficient denervated muscles, resulting in muscle atrophy. Our findings reveal a novel role and heretofore unrecognized mechanism of FGF21 in skeletal muscle atrophy, suggesting that inhibiting muscular FGF21 could be a promising strategy for mitigating skeletal muscle atrophy.
Project description:Local biosynthesis of estrogen in lower abdominal skeletal muscle tissue leads to estrogen receptor-α-mediated fibrosis, muscle atrophy, and inguinal hernia. We used microarrays to detail the gene expression after aromatase expression in lower abdominal muscle tissue and identify distinct classes of up-regulated or down-regulated genes.
Project description:Muscle atrophy is associated with aging (sarcopenia) and chronic unloading (such as bed confinement and immobilization with casts), as well as various pathological conditions such as type 1 diabetes and nerve injury (denervation). C57BL/6 mice (7 weeks old, male) were denervated. After 14 days, skeletal muscle was collected and RNA extracted. Expression of Dnmt3a was reduced while expression of Gdf5 was increased by denervation.
Project description:Skeletal muscle exhibits remarkably plasticity under both physiological and pathological conditions. We used adult mice with sciatic denervation as model of muscle atrophy. SnRNA-seq was performed to generate single-nucleus transcriptome profiles of gastrocnemius from normal and denervation mice. Our results define the myonuclear transition, metabolic remodeling and gene regulation networks associated with muscle atrophy induced by denervation and illustrated the molecular basis of heterogeneity and plasticity of muscle cells in response to muscle atrophy, thus providing a resource for exploring molecular mechanisms leading to muscle atrophy
Project description:We report that the phytoestrogen genistein acts as a tissue-specific androgen receptor modulator in mouse using a novel androgen reporter mouse line and gene expression profiling. Genistein is a partial androgen agonist/antagonist in prostate, brain, and testis but not in skeletal muscle or lung. Gene expression profiling has been done from prostates of intact and castrated male mice treated with genistein or vehicle. Gene expression profiling was also done from prostates of estradiol-treated intact male mice.
Project description:Around one sixth of breast cancer cases are classified as triple-negative breast cancer (TNBC), named after the absence of the expression of estrogen receptors (ER), progesterone receptors (PR), and human epidermal growth factor receptor 2 (HER2); however, patients with TNBC suffer from poor clinical outcome and shortage of targeted therapy. Genistein, an estrogenic soy isoflavone, shows anti-cancer effects in TNBC cells such as inducing G2/M cell cycle arrest and apoptosis. However, the underlying mechanism of its anti-cancer effects is poorly understood and its elucidation can help the development of novel therapeutic strategies for TNBC. In this study, by combining isobaric tag-based TMT labeling with titanium dioxide-based phosphopeptide enrichment, we quantitated 5,445 phosphorylation sites on 2,008 phosphoproteins in a TNBC cell line, MDA-MB-231, upon genistein treatment. Our analysis revealed 332 genistein-regulated phosphorylation sites on 226 proteins. Our data show that genistein can regulate several biological processes during the cell cycle, including DNA replication, cohesin complex cleavage, and kinetochore formation. In the meantime, genistein can also activate DNA damage response, including activation of ATR and BRCA1 complex. Overall, for the first time, our study present the evidence that genistein could inhibit TNBC cell growth by regulating the cell cycle and DNA damage response. Our findings help elucidate the mechanisms through which genistein exerts its anti-cancer effects in TNBC cells.
Project description:Analysis of denervation induced regulation of muscle mass at gene expression level. The hypothesis tested in the present study was that the presence of MuRF1 contributes to the extent of gene expression changes observed in specific sets of genes during a challenge leading to muscle atrophy. Results provide important information on the response of triceps surae muscle to sciatic nerve resection (denervation), such as specific structural, metabolic, and neuromuscular junction associated genes, that may be influenced by MuRF1 during atrophy. Total RNA obtained from isolated triceps surae muscle subjected to 3 or 14 days post-denervation compared to nonsurgically treated littermate control muscles.