Project description:This deposit is composed of paired-end reads from 90 isolates of four different gram-negative bacterial species. The raw reads were used to generate predictions of antimicrobial resistance. Raw sequence reads
Project description:To survive during colonization or infection of the human body, microorganisms must defeat antimicrobial peptides, which represent a key component of innate host defense in phagocytes and on epithelia. However, is not known how the clinically important group of Gram-positive bacteria sense antimicrobial peptides to coordinate a directed defensive response. By determining the genome-wide gene regulatory response to human beta defensin 3 in the nosocomial pathogen Staphylococcus epidermidis, we discovered an antimicrobial peptide sensor system that controls major specific resistance mechanisms to antimicrobial peptides and is unrelated to the Gram-negative PhoP/PhoQ system. Keywords: Wild type control vs treated vs mutant
Project description:To survive during colonization or infection of the human body, microorganisms must defeat antimicrobial peptides, which represent a key component of innate host defense in phagocytes and on epithelia. However, is not known how the clinically important group of Gram-positive bacteria sense antimicrobial peptides to coordinate a directed defensive response. By determining the genome-wide gene regulatory response to human beta defensin 3 in the nosocomial pathogen Staphylococcus epidermidis, we discovered an antimicrobial peptide sensor system that controls major specific resistance mechanisms to antimicrobial peptides and is unrelated to the Gram-negative PhoP/PhoQ system. Wild type untreated in triplicate is compared to wild type treated in triplicate along with three mutants in triplicate with and without treatment of human beta defensin 3, totalling 30 samples
Project description:Diclofenac is a non-steroidal anti-inflammatory drug (NSAID) which has been shown to increase the susceptibility of various bacteria to antimicrobials and demonstrated to have broad antimicrobial activity. This study describes transcriptome alterations in S. aureus strain COL grown with diclofenac and characterizes the effects of this NSAID on antibiotic susceptibility in laboratory, clinical and diclofenac reduced-susceptibility (DcRS) mutant S. aureus strains.
Project description:During growth in their ecological niche fungi encounter many (micro)organisms that compete for nutrients and /or have antagonistic activity. However, little is known about responses of fungi upon exposure to other microbes. In this project we want to gain insight in induced responses of C. cinerea towards bacteria through comparison of the transcriptome of vegetative C. cinerea mycelium either grown alone or exposed to the bacterial species Escherichia coli or Bacillus subtilis