Project description:We applied Formaldehyde-Assisted Isolation of Regulatory Elements enrichment followed by sequencing (FAIRE-Seq) to generate genome-wide temporal chromatin maps of Chlamydia trachomatis-infected human epithelial cells in vitro over the chlamydial developmental cycle. We detected both conserved and distinct temporal regions of chromatin accessibility associated with C. trachomatis infection. The observed differentially accessible chromatin regions, including several Clusters of Open Regulatory Elements (COREs) and temporally-enriched sets of transcription factors, may help shape the host cell response to infection. These regions and motifs were linked to genomic features and genes associated with immune responses, re-direction of host cell nutrients, intracellular signaling, cell-cell adhesion, extracellular matrix, metabolism and apoptosis. This work will serve as a basis for future functional studies of transcriptional regulation and epigenomic regulatory elements in Chlamydia-infected human cells.
Project description:Experimental screening of a compound library identified a molecule that potently inhibits the growth of the obligate intracellular bacterial pathogen Chlamydia trachomatis in human cells. To identify the molecular target of the compound, three mutant bacterial strains resistant to its inhibitory action were generated by long-term passage in the presence of initially low but increasing concentrations of the molecule. Subsequently, genomic DNA of the three mutant and the wildtype bacteria was isolated and subjected to whole genome sequencing to identify resistance-promoting mutations.