Project description:In vitro maturation (IVM) of the oocytes is a routine method in bovine embryo production. The competence of bovine oocytes to develop into embryo after IVM and in vitro fertilization (IVF) is lower as compared to in vivo preovulatory oocytes. Cumulus cells (CC) that enclose an oocyte are involved in the acquisition of oocyte quality during maturation. Using transcriptomic approach we compared cumulus cells gene expression during IVM with that in vivo preovulatory period. Global transcriptional profiling was performed using cumulus cells collected from mature bovine oocytes (metaphase-II stage) after maturation performed either in vivo or in vitro. In vivo matured cumulus cells were collected from ovulatory follicles of Montbeliard adult cows by ovum pick-up in vivo (OPU, n=4). In vitro matured cumulus cells were recovered from the oocytes after 22h of in vitro culture of cumulus-oocyte complexes (50 COC per experiment) from 2-6 mm ovarian follicles of adult cows (MIV, n=4). Gene expression analysis was carried out between in vivo and in vitro matured cumulus representing a total of 8 slides (dye swap protocol)
Project description:In vitro maturation (IVM) of the oocytes is a routine method in bovine embryo production. The competence of bovine oocytes to develop into embryo after IVM and in vitro fertilization (IVF) is lower as compared to in vivo preovulatory oocytes. Cumulus cells (CC) that enclose an oocyte are involved in the acquisition of oocyte quality during maturation. Using transcriptomic approach we compared cumulus cells gene expression during IVM with that in vivo preovulatory period.
Project description:Somatic cells surrounding the oocyte were sampled at the following stages: developmentally incompetent or poorly competent prophase I oocytes (NC1 oocytes), developmentally competent prophase I oocytes (C1 oocytes), and developmentally competent metaphase II oocytes (C2 oocytes). NC1 cumulus cells (CC) were sampled from immature calf oocytes, C1 samples from immature cow oocytes, and C2 samples from in vivo matured cow oocytes. Global transcriptional profiling was performed using cumulus cells collected from bovine ovarian follicles during in vivo oocyte developmental competence acquisition. Cumulus cells were collected at 3 stages: early stage follicles (prophase I arrested oocytes, meiotically competent but developmentally incompetent, n=6), late stage follicles (prophase I arrested oocytes, meiotically competent and developmentally competent, n=6) and ovulatory follicles collected by ovum pick-up (OPU) in vivo (metaphase II arrested oocytes, developmentally fully competent, n=5).
Project description:Cumulus cells surrounding the oocyte were sampled at the following stages: developmentally incompetent or poorly competent prophase I oocytes (NC1 oocytes), developmentally competent prophase I oocytes (C1 oocytes), and developmentally competent metaphase II oocytes (C2 oocytes). NC1 samples were collected from immature, unexpanded cumulus-oocytes complexes (COC) from prepubertal (3-week-old) mice, C1 samples from immature, unexpanded cumulus-oocytes complexes (COC) from adult (8-week-old) and C2 samples from mature, expanded COCs obtained from the oviduct from 8-week-old mice after standard superovulation protocol. Global transcriptional profiling was performed using cumulus cells collected from murine ovarian follicles during in vivo oocyte developmental competence acquisition. Cumulus cells were collected at 3 stages: early stage follicles (prophase I arrested oocytes, meiotically competent but developmentally incompetent, n=5), late stage follicles (prophase I arrested oocytes, meiotically competent and developmentally competent, n=5) and ovulatory follicles collected in vivo (metaphase II arrested oocytes, developmentally fully competent, n=5).
Project description:Transcriptional profiling of cumulus cells differentiation throughout oocyte competence acquisition in the bovine ovarian follicles.
Project description:Cumulus-oocyte complexes (COCs) used for in vitro production (IVP) of bovine embryos originate from antral follicles of different sizes, leading to variations in developmental competence. To address this, pre-in vitro maturation (pre-IVM) allows oocytes with additional time to acquire competence. Given the role of follicular fluid-derived extracellular vesicles (EVs) in ovarian follicle communication, which has been shown to vary in content and function across folliculogenesis, we investigated whether EVs from early versus late antral follicles influence COCs during pre-IVM. EV supplementation significantly altered gene expression in cumulus cells and oocytes. In cumulus cells, affected pathways included MAPK signaling, Gap junctions, Cytokine-cytokine receptor interaction, Axon guidance, cAMP, and Cushing syndrome. In oocytes, fewer genes were altered, with effects on p53 signaling and Cholesterol metabolism. Despite these changes, no significant effects of the EV treatment were noted on
Project description:This SuperSeries is composed of the following subset Series: GSE36602: Transcriptional profiling of somatic cells differentiation throughout oocyte competence acquisition in rainbow trout ovarian follicles. GSE36603: Transcriptional profiling of somatic cells differentiation throughout oocyte competence acquisition in the xenopus ovarian follicles. GSE36604: Transcriptional profiling of cumulus cells differentiation throughout oocyte competence acquisition in the murine ovarian follicles. GSE36605: Transcriptional profiling of cumulus cells differentiation throughout oocyte competence acquisition in the bovine ovarian follicles. Refer to individual Series