Project description:Drosophila melanogaster is a validated eukaryotic model for immunity-concerned studies in the post-genomic era. In the present study we performed oral experimental infection of D. melanogaster with Pseudomonas aeruginosa (strain ATCC27853). By using a whole genome microarray approach, we intended to identify significant alterations in the expression profile of relevant genes amenable to qualify as new models for the investigation of specific host-parasite interactions.
Project description:Proteomic Analysis (MS/MS) of Drosophila melanogaster mtx2 (Ortholog of CG8004) Heterozygous versus Homozygous Mutants at 2 Days Post-Pupa Formation
Project description:Thermal acclimation study on Drosophila melanogaster reared at 3 different temperatures (12, 25, and 31oC). The proteomic profiles of D. melanogaster under these different temperatures were analyzed and compared using label-free tandem mass spectrometry.
Project description:we investigated changes in transcriptome of Drosophila guts following ingestion of sucrose (control), Erwinia carotovora carotovora 15, Pseudomonas entomophila, or Pseudomonas entomophila mutant gacA
Project description:<p>Viral studies of Drosophila melanogaster typically involve virus injection with a small needle, causing post-injury a wounding/wound healing response, in addition to the effects of viral infection. However, the metabolic response to the needle injury is understudied, and many viral investigations neglect potential effects of this response. Furthermore, the wMel strain of the endosymbiont bacterium Wolbachia pipientis provides anti-viral protection in Drosophila. Here we used NMR-based metabolomics to characterise the acute wounding response in Drosophila and the relationship between wound healing and the Wolbachia strain wMel. The most notable response to wounding was found on the initial day of injury and lessened with time in both uninfected and Wolbachia infected flies. Metabolic changes in injured flies revealed evidence of inflammation, Warburg-like metabolism and the melanisation immune response as a response to wounding. In addition, at five days post injury Wolbachia infected injured flies were metabolically more similar to the uninjured flies than uninfected injured flies were at the same time point, indicating a positive interaction between Wolbachia infection and wound healing. This study is the first metabolomic characterisation of the wound response in Drosophila and its findings are crucial to the metabolic interpretation of viral experiments in Drosophila in both past and future studies.</p>