Project description:The cancer stem cell (CSC) hypothesis postulates that tumors are maintained by a self-renewing CSC population that is also capable of differentiating into non-self renewing cell populations that constitute the bulk of the tumor. Targeting breast CSC (BCSC) self-renewal represents an avenue for developing therapeutics; however, the molecular mechanisms that govern self-renewal of BCSCs are poorly understood. Our data show the small molecule ID8 decreases overall cell growth, but increases the self-renewal of Aldefluor+ BCSCs and increases functional metastatic BCSCs in a xenograft model. Microarray analysis showed that ID8 is a pleotropic molecule by increasing numerous pathways, including cytokines and chemokines. However, inhibition of those pathways does not abrogate the ID8-induced increase in Aldefluor+ BCSCs. Rather, ID8 is able to activate MAPK pathway through upregulation of the scaffold protein LAMTOR3 and inhibition of MEK prevented the increase in Aldefluor+ BCSCs. By using ID8 as a molecular tool, we identified a new function of the MAPK pathway in regulating BCSC growth and self-renewal.
Project description:Gene expression profiling of immortalized human mesenchymal stem cells with hTERT/E6/E7 transfected MSCs. hTERT may change gene expression in MSCs. Goal was to determine the gene expressions of immortalized MSCs.
Project description:Transcriptional profiling of human mesenchymal stem cells comparing normoxic MSCs cells with hypoxic MSCs cells. Hypoxia may inhibit senescence of MSCs during expansion. Goal was to determine the effects of hypoxia on global MSCs gene expression.