Project description:The plant recognition specific PCA cluster mediates early chemical communication between plant and fungus, is required for colonization and it is likely responsible for the high potential of T. harzianum and closely related species for biocontrol applications.
Project description:Insect pathogenic fungus Beauveria bassiana in one of the best studied insect biocontrol fungus, which infects insects by cuticle penetration. After breaking the cuticles, the fungus will propagate in insect hemocoel and kill insect hosts. It has also been found that the mycelia of B. bassiana can penetrate plant tissues to reach insect inside plant, e.g. corn borer (Ostrinia furnacalis), but do not cause damage to plants. The mechanism of fungal physiological plasticity is poorly understood. To accompany our genome sequencing work of B. bassiana strain ARSEF 2860, fungal transcriptional responses to different niches were studied using an Illumina RNA_seq technique. To examine fungal response to insect cuticle, conidia were inoculated on locust hind wings for 24 hours before used for RNA extraction. To evaluate fungal adaptation to insect hemocole, the fifth instar larvae of cotton bollworms were injected with spore suspension and fungal cells isolated by centrifugation in a step gradient buffer. To unveil the mechanism of interaction with plants, the fungus was grown in corn root exudates for 24 hours. After RNA sequencing, around three million tags were acquired for each sample and fungal transcriptional profiles were compared. Unveiling gene differential expression patterns when the insect biocontrol fungus Beauveria bassiana grown in insect hemocoel, corn root exudates and on insect cuticles.
Project description:To gain insights into the cellular mechanisms by which indolic phytoalexins exerts its toxicity and investigate the adaptive strategies used by the fungus, we analyzed fungal transcriptional responses to short-term exposure to brassinin and camalexin.
Project description:Extracellular vesicles (EVs) are increasingly recognized as an important mechanism for cell-cell interactions. Their role in fungi is still poorly understood and they have been isolated from only a handful of species. Here, we isolated and characterized EVs from Aureobasidium pullulans, a biotechnologically important black yeast-like fungus that is increasingly used for biocontrol of phytopathogenic fungi and bacteria. After optimization of the isolation protocol, characterization of EVs from A. pullulans by transmission electron microscopy (TEM) revealed a typical cup-shaped morphology and different subpopulations of EVs. These results were confirmed by nanoparticle tracking analysis (NTA), which revealed that A. pullulans produced 6.1 × 10^8 nanoparticles per milliliter of culture medium. Proteomic analysis of EVs detected 642 proteins. A small fraction of them had signal peptides for secretion and transmembrane domains. Proteins characteristic of different synthesis pathways were found, suggesting that EVs are synthesized by multiple pathways in A. pullulans. Enrichment analysis using Gene Ontology showed that most of the proteins found in the EVs were associated with primary metabolism. When sequencing the small RNA fraction of A. pullulans EVs, we found two hypothetical novel mil-RNAs. Finally, we tested the biocontrol potential of EVs from A. pullulans. The EVs did not inhibit the germination of spores of three important phytopathogenic fungi – Botrytis cinerea, Colletotrichum acutatum, and Penicillium expansum. However, exposure of grown cultures of C. acutatum and P. expansum to A. pullulans EVs resulted in visible changes in morphology of colonies. These preliminary results suggest that EVs may be part of the antagonistic activity of A. pullulans, which is so far only partially understood. Thus, the first isolation and characterization of EVs from A. pullulans provides a starting point for further studies of EVs in the biotechnologically important traits of the biocontrol black fungus A. pullulans in particular and in the biological role of fungal EVs in general.
Project description:Background: The biological control agent Pseudomonas chlororaphis PA23 is effective at protecting Brassica napus (canola) from the necrotrophic fungus Sclerotinia sclerotiorum via direct antagonism. Despite the growing importance of biocontrol bacteria in plant protection from fungal pathogens, little is known about how the host plant responds to bacterial priming on the leaf surface or about changes in gene activity genome-wide in the presence and absence of S. sclerotiorum. Results: PA23 priming of mature canola plants reduced the number of lesion forming petals by 90%. Global RNA sequencing of the host pathogen interface showed a reduction in the number of genes uniquely upregulated in response to S. sclerotiorum by 16-fold when pretreated with PA23. Upstream defense-related gene patterns suggest MAMP-triggered immunity via surface receptors detecting PA23 flagellin and peptidoglycans. Although systemic acquired resistance was induced in all treatment groups, a response centered around a glycerol-3-phosphate (G3P)-mediated pathway was exclusively observed in plants treated with PA23 alone. Activation of these defense mechanisms by PA23 involved mild reactive oxygen species production as well as pronounced thylakoid membrane structures and plastoglobule formation in leaf chloroplasts. Conclusion: Further to the direct antibiosis that it exhibits towards the pathogen S. sclerotiorum, PA23 primes defense responses in the plant through the induction of unique local and systemic defense regulatory networks. This study has shed light on the potential effects of biocontrol agents applied to the plant phyllosphere. Understanding these interactions will aid in the development of biocontrol systems as a viable alternative to chemical pesticides in the protection of important crop systems. Mature canola leaf tissue treated with combinations of PA23 or S. sclerotiorum ascospores (3 treatment groups) was compared to a water treated control (all treatments done in triplicate).
Project description:The free-living soil fungus Trichoderma hamatum GD12 is notable amongst other Trichoderma strains in exhibiting both biocontrol and plant growth promotion (PGP) activities, which are coincident with a markedly expanded genome when compared to other characterised biocontrol and PGP isolates. Here, we make direct comparisons of T. hamatum GD12 transcription during PGP, and during antagonism of the root-infecting pathogen Sclerotinia sclerotiorum, in peat-based microcosms. An extensive mRNA-seq analysis sampling six time-points, 1, 2, 4, 7, 10 and 15 days after microcosm establishment revealed dynamic and biphasic signatures in the transcriptional responses of T. hamatum GD12 during Sclerotinia biocontrol and lettuce growth promotion. Functional analysis of differentially expressed genes demonstrated up-regulation of transportation and oxidation-reduction genes during both processes. Sclerotinia biocontrol is most likely mediated by the synthesis and secretion of antifungal compounds. Notably, the biphasic response during biocontrol was further characterised by the expression of a number of uncharacterised GD12 genes, small-secreted cysteine rich proteins and secondary metabolite producing gene clusters. This work demonstrates that T. hamatum GD12 harnesses a reservoir of uncharacterised genes that are actively engaged during effective biological control of a plurivorous plant pathogen.
Project description:Insect pathogenic fungus Beauveria bassiana in one of the best studied insect biocontrol fungus, which infects insects by cuticle penetration. After breaking the cuticles, the fungus will propagate in insect hemocoel and kill insect hosts. It has also been found that the mycelia of B. bassiana can penetrate plant tissues to reach insect inside plant, e.g. corn borer (Ostrinia furnacalis), but do not cause damage to plants. The mechanism of fungal physiological plasticity is poorly understood. To accompany our genome sequencing work of B. bassiana strain ARSEF 2860, fungal transcriptional responses to different niches were studied using an Illumina RNA_seq technique. To examine fungal response to insect cuticle, conidia were inoculated on locust hind wings for 24 hours before used for RNA extraction. To evaluate fungal adaptation to insect hemocole, the fifth instar larvae of cotton bollworms were injected with spore suspension and fungal cells isolated by centrifugation in a step gradient buffer. To unveil the mechanism of interaction with plants, the fungus was grown in corn root exudates for 24 hours. After RNA sequencing, around three million tags were acquired for each sample and fungal transcriptional profiles were compared.
Project description:Beauveria basiana is a well-known filamentous entomopathogenic fungus. Oxidation tolerance is an important determinant to fungal pathogenicity and biocontrol potential. B. bassiana transcriptional co-activator multiprotein bridging factor 1 (BbMBF1) contributes to fungal resistance to the oxidative stress. The interactome of BbMBF1 was revealed by the qualitative proteomic analysis integrated with the immuno-precipitation. This study is sought to unveil the comprehensive protein interaction of BbMBF1 and isolate the BbMBF1-mediated transcription factor under oxidative stress.