Project description:Salmonella enterica constitutes a group of enteric pathogens with a broad host range, including humans, reptiles, and birds. S. enterica subsp. enterica is a common cause of inflammatory diarrhea in humans. We present the draft genome of S. enterica subsp. enterica serovar Enteritidis strain SEJ, including a 59-kbp plasmid.
Project description:In enteric bacteria, DNA supercoiling is highly responsive to environmental conditions. Host specific features of environment serve as cues for the expression of genes required for colonization of host niches via changing supercoiling [1]. It has been shown that substitution at position 87 of GyrA of Salmonella enterica str. SL1344 influences global supercoiling and results in an altered transcriptome with increased expression of stress response pathways [2]. Aminocoumarin antibiotics, such as novobiocin, can be used to relax supercoiling and alter the expression of supercoiling-sensitive genes. Meanwhile, Salmonella enterica demonstrates a significant resistance to this antibiotic and relatively small variability of supercoiling in response to the growth phase, osmotic pressure, and novobiocin treatment. Here we present for the first time transcriptome data of Salmonella enterica subsp. Enterica serovar Typhimurium str. 14028S grown in the presence of novobiocin. These data will help identify genes involved in novobiocin resistance and adaptation processes associated with torsion perturbations in S. enterica. Cleaned FASTQ files for the RNA-seq libraries are deposited in the NCBI Sequence Read Archive (SRA, Identifier: SRP239815) and have been assigned BioProject accession PRJNA599397.
Project description:Salmonella enterica subsp. enterica serovar Enteritidis is an important zoonotic food-borne pathogen causing serious human illnesses frequently linked to poultry products. Here, we report fully assembled genome sequences of 16 S. Enteritidis strains with common pulsed-field gel electrophoresis (PFGE) and phage types (8, 13, 13a, and 14b) that predominate in North America.
Project description:Single-molecule read technologies allow for detection of epigenomic base modifications during routine sequencing by analysis of kinetic data during the reaction, including the duration between base incorporations at the elongation site (the "inter-pulse duration.") Methylome data associated with a closed de novo bacterial genome of Salmonella enterica subsp. enterica serovar Javiana str. CFSAN001992 was produced and submitted to the Gene Expression Omnibus.
Project description:The crystal structure of SEp22, a DNA-binding protein from starved cells from Salmonella enterica subsp. enterica serovar Enteritidis, has been determined in two forms: the native state at 1.25 Å resolution and an iron-soaked form at 1.30 Å resolution. The SEp22 protomers form a dodecameric shell with 23 symmetry and a single iron ion per protomer was found at the ferroxidase centre in the iron-soaked form. Along the threefold axes of the 23 symmetry, hydrophilic Asp channels that consist of Asp146 were found. Iron ions may flow into the cavity of the dodecameric shell through the Asp channels.
Project description:The genome of Salmonella enterica subspecies enterica serovar Enteritidis phage type 8 strain EN1660, isolated from an outbreak in Thunder Bay, Canada, was sequenced to 46-fold coverage using an Illumina MiSeq with 300-bp paired-end sequencing chemistry to produce 28 contigs with an N50 value of 490,721 bp.
Project description:Salmonella enterica serovar Agona (S. Agona) is a foodborne pathogen that caused recurrent multistate outbreaks associated with cereal between 1998 and 2008, underscoring the endurance of Salmonella over time in low-moisture food (LMF) processing facilities. In this study, we aimed to determine the molecular mechanism of survival of S. Agona in LMF and confirm their impact on phenotype by the knockout study. S. Agona strain (CFSAN 000477), isolated from cereal, was selected for this study. A 100µl suspension with a concentration of ~10^11 cfu/ml was inoculated into 3g of rice cereals. Three replications of inoculated cereals were subjected to desiccation stress (aw ≤ 0.25) for 24h at room temperature (25⁰C). Inoculated cereal samples were collected at 6 timepoints post-inoculation. Cells were separated from the food matrix for RNA extraction. RNA sequencing was performed using the NextSeq 2000 platform. Read counts were generated with Salmon v1.9.0. Downstream analysis was conducted with R and KEGG mapper. There were 1120 differentially expressed genes (DEGs) in S. Agona in response to desiccation stress (Padj < 0.01, |log2FoldChange| >1), with 647 downregulated and 473 upregulated. Functional analysis of downregulated DEGs revealed that most of the genes were associated with metabolic pathways, followed by translation, suggesting slower growth in the surviving population. The top 3 upregulated genes/operons: kdp and ccm operon, and tisB were knocked out and checked for survival study. Approximately 1-2 log reduction (p>0.05) was noticed in the survival of the mutants compared with the wild type. This transcriptome data suggests that Salmonella Agona survives in low-moisture food by conserving energy, lowering metabolism, and reducing replication.