Project description:Metabolic reprogramming is widely known as a hallmark of cancer cells to allow adaptation of cells to sustain survival signals. In the past decade, altered lipid metabolism has been recognized to be a property of malignant cells. In this report, we describe a novel oncogenic signaling pathway exclusively in tyrosine kinase inhibitor (TKI)-resistant epidermal growth factor receptor (EGFR) mutant non-small cell lung cancer (NSCLC). EGFR mediates TKI-resistance through regulation of the fatty acid synthase (FASN), and inhibition of this pathway using the FASN inhibitor Orlistat, triggers cell death and reduces tumor sizes both in culture systems and in vivo. Together, data shown here provide compelling evidence that the fatty acid metabolism pathway is a candidate target for TKI-resistant NSCLC treatment.
Project description:Epidermal growth factor receptor (EGFR) harboring active mutations, Del19 and L858R, are most common oncogenic mutations in in non-small cell lung cancer (NSCLC) patients. The preferred treatment at first line is tyrosine kinase inhibitor (TKI) administration while the TKI-resistance usually develops because of acquiring the secondary EGFR T790M mutant. Protein-protein interactions (PPIs) constitute the signaling scaffold and thus aberrant PPIs ascribed to mutations often results in dysregulations of downstream signaling cascades. Affinity purification coupled mass spectrometry (AP-MS) was utilized to characterize the EGFR PPIs in four NSCLC cells which carry different EGFR subtypes representing as TKI-sensitive and -resistant models in this study. The EGFR interactomes of TKI-resistant NSCLC cells presented higher diversity of subcellular distribution as well as the hyperactive EGFR trafficking. Furthermore, gefitinib perturbation activated autophagy-mediated EGFR degradation in TKI-resistant NSCLC models and inhibiting autophagy process indeed reduced the TKI-resistance against gefitinib as cytotoxicity was significantly improved. Alternatively, gefitinib induced EGFR translocation toward cell periphery through Rab7 ubiquitination in TKI-sensitive models which may confer TKIs more chance to suppress EGFR activity. In brief, acquired T790M EGFR mutation rewired the EGFR inherent interactomes and thus guided EGFR moving toward distinct trafficking routes, EGFR recycling or autophagy-mediated degradation, in response to TKI insult in TKI-sensitive and -resistant NSCLC cells. These finding suggest that manipulation or combined autophagy inhibition may provide us a novel therapeutic strategy to manage TKI-resistance and tumor relapse in NSCLC.
Project description:Aberrant overexpression or activation of EGFR drives the development of non-small cell lung cancer (NSCLC) and acquired resistance to EGFR tyrosine kinase inhibitors (TKIs) by secondary EGFR mutations or c-MET amplification/activation remains as a major hurdle for NSCLC treatment. We previously identified WDR4 as a substrate adaptor of Cullin 4 ubiquitin ligase and an association of WDR4 high expression with poor prognosis of lung cancer. Here, using an unbiased ubiquitylome analysis, we uncover PTPN23, a component of the ESCRT complex, as a substrate of WDR4- based ubiquitin ligase. WDR4-mediated PTPN23 ubiquitination leads to its proteasomal degradation, thereby suppressing lysosome trafficking and degradation of wild type EGFR, EGFR mutant, and c-MET. Through this mechanism, WDR4 sustains EGFR and c-MET signaling to promote NSCLC proliferation, migration, invasion, stemness, and metastasis. Clinically, PTPN23 is downregulated in lung cancer and its low expression correlates with WDR4 high expression and poor prognosis. Targeting WDR4-mediated PTPN23 ubiquitination by a peptide that competes with PTPN23 for binding WDR4 promotes EGFR and c-MET degradation to block the growth and progression of EGFR TKI-resistant NSCLC. These findings identify a central role of WDR4/PTPN23 axis in EGFR and c-MET trafficking and a potential therapeutic target for treating EGFR TKI-resistant NSCLC.
Project description:Acquired resistance represents a bottleneck for effective molecular targeted therapy in lung cancer. Metabolic adaptation is a distinct hallmark of human lung cancer that might contribute to acquired resistance. In this study, we discovered a novel mechanism of acquired resistance to EGFR tyrosine kinase inhibitors (TKI) mediated by IGF2BP3-dependent cross-talk between epigenetic modifications and metabolic reprogramming through the IGF2BP3–COX6B2 axis. IGF2BP3 was upregulated in patients with TKI-resistant non–small cell lung cancer, and high IGF2BP3 expression correlated with reduced overall survival. Upregulated expression of the RNA binding protein IGF2BP3 in lung cancer cells reduced sensitivity to TKI treatment and exacerbated the development of drug resistance via promoting oxidative phosphorylation (OXPHOS). COX6B2 mRNA bound IGF2BP3, and COX6B2 was required for increased OXPHOS and acquired EGFR-TKI resistance mediated by IGF2BP3. Mechanistically, IGF2BP3 bound to the untranslated region of COX6B2 in an m6A-dependent manner to increase COX6B2 mRNA stability. Moreover, the IGF2BP3–COX6B2 axis regulated nicotinamide metabolism, which can alter OXPHOS and promote EGFR-TKI acquired resistance. Inhibition of OXPHOS with IACS-010759, a small-molecule inhibitor, resulted in strong growth suppression in vitro and in vivo in a gefitinib-resistant patient-derived xenograft model. Collectively, these findings suggest that metabolic reprogramming by the IGF2BP3–COX6B2 axis plays a critical role in TKI resistance and confers a targetable metabolic vulnerability to overcome acquired resistance to EGFR-TKIs in lung cancer.
Project description:CEACAM family proteins have been extensively studied as cell adhesion molecules, yet the biological and clinical significance of CEACAM6 remains relatively unexplored. Our research identifies a significant increase in CEACAM6 expression in lung adenocarcinoma, particularly correlating with EGFR mutation status. In EGFR-mutated lung cancer cells, CEACAM6 knockdown induced apoptosis and reduced p-ERK1/2 signaling downstream of EGFR. Treatment with EGFR-tyrosine kinase inhibitors (TKIs) decreased CEACAM6 levels, leading to TKI-resistant lung cancer cells that exhibited reduced p-ERK1/2 and increased epithelial-mesenchymal transition (EMT) characteristics. Co-immunoprecipitation assays revealed an interaction between CEACAM6 and EGFR. Although CEACAM6 expression was lost in EGFR-TKI resistant cells, its re-expression stabilized EGFR and increased sensitivity to EGFR-TKIs. TGF-? treatment, which induced EMT, also decreased CEACAM6 expression and improved EGFR-TKI resistance. Further analysis showed that EGFR-TKI resistant lung cancer cells had lower H3K27ac epigenetic modification levels at the CEACAM6 locus than EGFR-TKI sensitive cells. Treatment with HDAC1/2 inhibitors in EGFR-TKI sensitive cells reduced CEACAM6 expression, induced EMT and TGF-?-ligand/receptor gene expression, and enhanced EGFR-TKI resistance. These data highlight the crucial role of CEACAM6 in maintaining oncogenic EGFR signaling and its regulation by cytokine stimulation and epigenetic modification, influencing EGFR-TKI sensitivity. Our findings underscore CEACAM6's potential as a valuable biomarker in EGFR-driven lung adenocarcinoma and its intricate involvement in EGFR-related pathways.
Project description:Osimertinib, a third-generation EGFR-TKI, has applied to non-small cell lung cancer harboring activated EGFR mutation with or without T790M. However, the appearance of tumors resistant to osimertinib has been reported. We established and characterized osimertinib-resistant cells derived from NCI-H1975 cells harboring activating EGFR and T790M mutation.
Project description:Acquired resistance to tyrosine kinase inhibitors (TKI), such as osimertinib used to treat EGFR-mutant lung adenocarcinomas, limits long-term efficacy and is frequently caused by non-genetic mechanisms. Here, we define the chromatin accessibility and gene regulatory signatures of osimertinib sensitive and resistant EGFR-mutant cell and patient-derived models and uncover a role for mammalian SWI/SNF chromatin remodeling complexes in TKI resistance. By profiling mSWI/SNF genome-wide localization, we identify both shared and cancer cell line-specific gene targets underlying the resistant state. Importantly, genetic and pharmacologic disruption of the SMARCA4/SMARCA2 mSWI/SNF ATPases re-sensitizes a subset of resistant models to osimertinib via inhibition of mSWI/SNF-mediated regulation of cellular programs governing cell proliferation, epithelial-to-mesenchymal transition, epithelial cell differentiation, and NRF2 signaling. These data highlight the role of mSWI/SNF complexes in supporting TKI resistance and suggest potential utility of mSWI/SNF inhibitors in TKI-resistant lung cancers.
Project description:Acquired resistance to tyrosine kinase inhibitors (TKI), such as osimertinib used to treat EGFR-mutant lung adenocarcinomas, limits long-term efficacy and is frequently caused by non-genetic mechanisms. Here, we define the chromatin accessibility and gene regulatory signatures of osimertinib sensitive and resistant EGFR-mutant cell and patient-derived models and uncover a role for mammalian SWI/SNF chromatin remodeling complexes in TKI resistance. By profiling mSWI/SNF genome-wide localization, we identify both shared and cancer cell line-specific gene targets underlying the resistant state. Importantly, genetic and pharmacologic disruption of the SMARCA4/SMARCA2 mSWI/SNF ATPases re-sensitizes a subset of resistant models to osimertinib via inhibition of mSWI/SNF-mediated regulation of cellular programs governing cell proliferation, epithelial-to-mesenchymal transition, epithelial cell differentiation, and NRF2 signaling. These data highlight the role of mSWI/SNF complexes in supporting TKI resistance and suggest potential utility of mSWI/SNF inhibitors in TKI-resistant lung cancers.
Project description:Acquired resistance to tyrosine kinase inhibitors (TKI), such as osimertinib used to treat EGFR-mutant lung adenocarcinomas, limits long-term efficacy and is frequently caused by non-genetic mechanisms. Here, we define the chromatin accessibility and gene regulatory signatures of osimertinib sensitive and resistant EGFR-mutant cell and patient-derived models and uncover a role for mammalian SWI/SNF chromatin remodeling complexes in TKI resistance. By profiling mSWI/SNF genome-wide localization, we identify both shared and cancer cell line-specific gene targets underlying the resistant state. Importantly, genetic and pharmacologic disruption of the SMARCA4/SMARCA2 mSWI/SNF ATPases re-sensitizes a subset of resistant models to osimertinib via inhibition of mSWI/SNF-mediated regulation of cellular programs governing cell proliferation, epithelial-to-mesenchymal transition, epithelial cell differentiation, and NRF2 signaling. These data highlight the role of mSWI/SNF complexes in supporting TKI resistance and suggest potential utility of mSWI/SNF inhibitors in TKI-resistant lung cancers.
Project description:Acquired resistance to tyrosine kinase inhibitors (TKI), such as osimertinib used to treat EGFR-mutant lung adenocarcinomas, limits long-term efficacy and is frequently caused by non-genetic mechanisms. Here, we define the chromatin accessibility and gene regulatory signatures of osimertinib sensitive and resistant EGFR-mutant cell and patient-derived models and uncover a role for mammalian SWI/SNF chromatin remodeling complexes in TKI resistance. By profiling mSWI/SNF genome-wide localization, we identify both shared and cancer cell line-specific gene targets underlying the resistant state. Importantly, genetic and pharmacologic disruption of the SMARCA4/SMARCA2 mSWI/SNF ATPases re-sensitizes a subset of resistant models to osimertinib via inhibition of mSWI/SNF-mediated regulation of cellular programs governing cell proliferation, epithelial-to-mesenchymal transition, epithelial cell differentiation, and NRF2 signaling. These data highlight the role of mSWI/SNF complexes in supporting TKI resistance and suggest potential utility of mSWI/SNF inhibitors in TKI-resistant lung cancers.