Project description:Women are born with millions of primordial follicles which gradually decrease with increasing age and this irreversible supply of follicles completely exhausts at menopause. The fertility capacity of women diminishes in parallel with aging. The mechanisms for reproductive aging are not fully understood. In our recent work we observed a decline in BRCA1 mediated DNA repair in aging rat primordial follicles. To further understand the age-related molecular changes, we performed microarray gene expression analysis using total RNA extracted from immature (18â20 days) and aged (400â450 days) rat primordial follicles. The results of current microarray study revealed that there were 1011 (>1.5 fold, p<0.05) genes differentially expressed between two groups in which 422 genes were up-regulated and 589 genes were down-regulated in aged rat primordial follicles compared to immature. The gene ontology and pathway analysis of differentially expressed genes revealed a critical biological function such as cell cycle, oocyte meiosis, chromosomal stability, transcriptional activity, DNA replication and DNA repair were affected by age and this considerable difference in gene expression profiles may have adverse influence on oocyte quality. Our data provide information on the processes that may contribute to aging and age-related decline in fertility. In total of 6 samples, 3 replicate samples were from immature rat primordial follicles and 3 replicate samples were from aged rat primordial follicles. For each replicate sample, the primordial follicles isolated from multiple isolations (each time 10-20 rat ovaries) were finally pooled in order to get required quantity of RNA.
Project description:Women are born with millions of primordial follicles which gradually decrease with increasing age and this irreversible supply of follicles completely exhausts at menopause. The fertility capacity of women diminishes in parallel with aging. The mechanisms for reproductive aging are not fully understood. In our recent work we observed a decline in BRCA1 mediated DNA repair in aging rat primordial follicles. To further understand the age-related molecular changes, we performed microarray gene expression analysis using total RNA extracted from immature (18–20 days) and aged (400–450 days) rat primordial follicles. The results of current microarray study revealed that there were 1011 (>1.5 fold, p<0.05) genes differentially expressed between two groups in which 422 genes were up-regulated and 589 genes were down-regulated in aged rat primordial follicles compared to immature. The gene ontology and pathway analysis of differentially expressed genes revealed a critical biological function such as cell cycle, oocyte meiosis, chromosomal stability, transcriptional activity, DNA replication and DNA repair were affected by age and this considerable difference in gene expression profiles may have adverse influence on oocyte quality. Our data provide information on the processes that may contribute to aging and age-related decline in fertility.
Project description:Aging causes a functional decline in tissues throughout the body that may be delayed by caloric restriction (CR). However, the cellular profiles and signatures of aging, as well as those ameliorated by CR, remain unclear. Here, we built comprehensive single-cell and single-nucleus transcriptomic atlases across various rat tissues undergoing aging and CR. CR attenuated aging-related changes in cell type composition, gene expression, and core transcriptional regulatory networks. Immune cells were increased during aging, and CR favorably reversed the aging-disturbed immune ecosystem. Computational prediction revealed that the abnormal cell-cell communication patterns observed during aging, including the excessive proinflammatory ligand-receptor interplay, were reversed by CR. Our work provides multi-tissue single-cell transcriptional landscapes associated with aging and CR in a mammal, enhances our understanding of the robustness of CR as a geroprotective intervention, and uncovers how metabolic intervention can act upon the immune system to modify the process of aging.
Project description:In order to establish a rat embryonic stem cell transcriptome, mRNA from rESC cell line DAc8, the first male germline competent rat ESC line to be described and the first to be used to generate a knockout rat model was characterized using RNA sequencing (RNA-seq) analysis.