Project description:Clonorchiasis is associated with bile duct malignancy and the subsequent development of cholangiocarcinoma. Although this is likely caused by adult Clonorchis sinensis and its excretory-secretory products (ESP), the precise molecular mechanisms remain obscure. To evaluate the effect of C. sinensis infection on differential gene expression in host hepatocytes, we used cDNA microarrays in human cholangiocarcinoma cells through the mimicking of C. sinensis infestation, and analyzed differential mRNA expression patterns of host cells. Keywords: Time course
Project description:Analysis of host response to the infected Clonorchis sinensis metacercariae and adult worm. The infected tissues evidenced altered expression of genes involved in systems such as immune response and cell cycle regulation, as compared with normal tissues.
Project description:Analysis of host response to the infected Clonorchis sinensis metacercariae and adult worm. The infected tissues evidenced altered expression of genes involved in systems such as immune response and cell cycle regulation, as compared with normal tissues. Total RNA obtained from isolated liver tissues subjected to 1, 2, 4, and 6 weeks post-infection compared to uninfected liver tissues.
Project description:We examined gene expression profiles (27028 genes) in the livers of Sprague-Dawley rats with no infection and at 2 and 4 weeks after Clonorchis sinensis infection using Whole Rat Genome Microarray 4x44K v3 (GPL14745, Agilent-028282)
Project description:Clonorchiasis remains an important zoonotic parasitic disease worldwide. The molecular mechanisms of host-parasite interaction are not fully understood. Non-coding microRNAs (miRNAs) are considered to be key regulators in parasitic diseases. The regulation of miRNAs and host micro-environment may be involved in clonorchiasis, and require further investigation. MiRNA microarray technology and bioinformatic analysis were used to investigate the regulatory mechanisms of host miRNA and to compare miRNA expression profiles in the liver tissues of Clonorchis sinensis-infected rats and controls.A total of eight miRNAs were downregulated and two were upregulated, which showed differentially altered expression profiles in the liver tissue of C. sinensis-infected rats. Further analysis of the differentially expressed miRNAs revealed that many important signal pathways were triggered after infection with C. sinensis, which were related to clonorchiasis pathogenesis, such as cell apoptosis and inflammation, as well as genes involved in signal transduction mechanisms, such as pathways in cancer and the Wnt and Mitogen-activated protein kinases (MAPK) signaling pathways.This dysregulation in miRNA expression may contribute to the etiology and pathophysiology of clonorchiasis. These results also provide new insights into the regulatory mechanisms of miRNAs in clonorchiasis, which may present potential targets for future C. sinensis control strategies.