Project description:CSB-depletion induced SH-SY5Y differentiation defects can be partially rescued by re-expression of SYT9 gene. This study characterizes the transcriptome signatures upon SYT9 re-expression in CSB-KD SH-SY5Y cells after RA treatment. The Nimblegen human 12 x 135K gene expression array was used to characterize the transcriptome landscape of CSB-KD SH-SY5Y cells overepressing SYT9 before and after RA treatment.
Project description:CSB-depletion induced SH-SY5Y differentiation defects can be partially rescued by re-expression of SYT9 gene. This study characterizes the transcriptome signatures upon SYT9 re-expression in CSB-KD SH-SY5Y cells after RA treatment.
Project description:Neuroblastoma cells SH-SY5Y undergoes a morphology change upon retinoic acid (RA) treatment, the neurite outgrowth characteristic in undividing cells is accompanied by cell cycle arrest and neuronal markers expression, controlled by a precise dynamic molecular circuits. Depletion of CSB in SH-SY5Y cells leads to differentiation defects. This study examines the temporal gene expression profile during differentiation. Using Nimblegen microarray we characterized the gene expression profiles before and after RA treatment in both wild type and CSB-KD SH-SY5Y cells, and we identified the difference in gene expression between wild type and CSB-KD cells underlying the differentiation defects induced by CSB depletion.
Project description:Background: SH-SY5Y cells exhibit a neuronal phenotype when treated with all-trans retinoic acid (RA), but the molecular mechanism of activation in the signaling pathway mediated by phosphatidylinositol 3-kinase (PI3K) is not sufficiently understood. To shed new light on the mechanism, we comprehensively compared the gene expression profiles between SK-N-SH cells and two subtypes of SH-SY5Y cells (SH-SY5Y-A and SH-SY5Y-E), each of which showed a different phenotype during RA-mediated differentiation. Results: SH-SY5Y-A cells differentiated in the presence of RA, whereas RA-treated SH-SY5Y-E cells required additional treatment with brain-derived neurotrophic factor (BDNF) for full differentiation. In combination with perturbation using a PI3K inhibitor, LY294002, we identified 386 genes and categorized them into two clusters dependent on the PI3K signaling pathway during RA-mediated differentiation in SH-SY5Y-A cells. Transcriptional regulation of the gene cluster was greatly reduced in SK-N-SH cells or partially impaired in SH-SY5Y-E cells in coincidence with a defect in the neuronal phenotype of these cell lines. Additional stimulation with BDNF induced a set of neural genes which were down-regulated in RA-treated SH-SY5Y-E cells but were abundant in the differentiated SH-SY5Y-A cells. Conclusions: We identified the gene clusters controlled by PI3K- and TRKB-mediated signaling pathways during differentiation in two subtypes of SH-SY5Y cells. TRKB-mediated bypass pathway compensates for the impaired neural functions generated by defects in several signaling pathways including PI3K in SH-SY5Y-E cells. The expression profiling data are useful for further studies to elucidate the signal transduction-transcriptional network including PI3K and/or TRKB. Keywords: Cell type comparison, time course