Project description:16S amplicon pool analyses of the four gut sections of the wood-feeding beetle, Odontotaenius disjunctus The beetle is purely wood feeding, and we aim to first characterize the community that exist within the gut sections
Project description:16S amplicon pool analyses of the four gut sections of the wood-feeding beetle, Odontotaenius disjunctus The beetle is purely wood feeding, and we aim to first characterize the community that exist within the gut sections 4 beetles, four gut sections per beetle, one PhyloChip per gut section, total = 16 chips
Project description:During a compatible interaction, root-knot nematodes (Meloidogyne spp.) induce the redifferentiation of root cells into multinucleate nematode feeding cells giant cells. These hypertrophied cells result from repeated nuclear divisions without cytokinesis, are metabolically active and present features typical of transfer cells. Hyperplasia of the surrounding cells leads to formation of the typical root gall. We investigate here the plant response to root-knot nematodes.
Project description:AIM: By adopting comparative transcriptomic approach, we investigated the gene expression of wood decomposing Basidiomycota fungus Phlebia radiata. Our aim was to reveal how hypoxia and lignocellulose structure affect primary metabolism and the expression of wood decomposition related genes. RESULTS: Hypoxia was a major regulator for intracellular metabolism and extracellular enzymatic degradation of wood polysaccharides by the fungus. Our results manifest how oxygen depletion affects not only over 200 genes of fungal primary metabolism but also plays central role in regulation of secreted CAZyme (carbohydrate-active enzyme) encoding genes. Based on these findings, we present a hypoxia-response mechanism in wood-decaying fungi divergent from the regulation described for Ascomycota fermenting yeasts and animal-pathogenic species of Basidiomycota.