Project description:Persistent Respiratory syncytial virus (RSV) infection in humans, animal models and cell lines have proven persistence of viral genomic RNA and mRNA for long periods of time. Cell lines are well-established models that can be used to study alterations in the expression profile of the host genome. We postulate that RSV persistence might also indirectly induce changes in the homeostasis of non-infected cells through soluble factors. Thus, we evaluated the effect of conditioned medium (CM) from MΦP cultures on the transcriptional profile of non-infected macrophages through gene expression microarrays
Project description:WGS and WGBS data from monocyte-derived macrophages that were infected with Influenza A virus strain PR8WT, or a matching non-infected control.
Project description:Rice stripe virus (RSV) is one of the major virus diseases of rice in East Asia. Rice plants infected with RSV usually show symptoms such as chlorotic leaf stripes, weakness and senescence of leaves, and dwarfism. In order to characterize the host response to RSV infection at the gene expression level, the changes in transcriptome profiles of RSV-infected rice were monitored at three, six, nine, twelve, and fifteen days after inoculation by a rice oligomicroarray. The microarray data indicated that 1. transcription, translation and protein processing machineries were activated, 2. chloroplasts were disintegrated, and mitochondrion function was activated, 3. genes for transporters and cell wall synthesis were suppressed, and 4. the expression levels of pathogenesis-related genes were changed by RSV infection. Concurrent observation of symptom development, virus accumulation and transcriptome profiles in RSV-infected plants indicates that RSV symptoms are caused by unbalanced activities of organelles, suppression of cell elongation, and uncontrolled water transport, while translation activity of host cells may be increased in correlation with RSV propagation. Keywords: time course, virus infection, disease response Comparison between RSV- and mock-infected rice. Biological replicates: 3 control, 3 infected, independently grown and harvested; 4 time points (3, 6, 9, 12 days after inoculation (DAI)). Biological replicate: 1 control, 1 infected, independently grown and harvested; 1 time point (15 DAI). 1 sample derived from 5 plants grown under the same conditons.
Project description:Primary human skeletal muscle cells (Lonza) were treated with LLC1 conditioned medium, LLC1 conditioned medium plus Calcitriol, LLC1 non-conditioned medium or LLC1 non-conditioned medium plus Calcitriol for a period of 24 hours prior to isolation of RNA.
Project description:RNA-seq, ATAC-seq and ChIPmentation data from monocyte-derived macrophages that were infected with Influenza A virus strain PR8WT, or a matching non-infected control.
Project description:Rice stripe virus (RSV) is one of the major virus diseases of rice in East Asia. Rice plants infected with RSV usually show symptoms such as chlorotic leaf stripes, weakness and senescence of leaves, and dwarfism. In order to characterize the host response to RSV infection at the gene expression level, the changes in transcriptome profiles of RSV-infected rice were monitored at three, six, nine, twelve, and fifteen days after inoculation by a rice oligomicroarray. The microarray data indicated that 1. transcription, translation and protein processing machineries were activated, 2. chloroplasts were disintegrated, and mitochondrion function was activated, 3. genes for transporters and cell wall synthesis were suppressed, and 4. the expression levels of pathogenesis-related genes were changed by RSV infection. Concurrent observation of symptom development, virus accumulation and transcriptome profiles in RSV-infected plants indicates that RSV symptoms are caused by unbalanced activities of organelles, suppression of cell elongation, and uncontrolled water transport, while translation activity of host cells may be increased in correlation with RSV propagation. Keywords: time course, virus infection, disease response
Project description:Rationale: Respiratory syncytial virus (RSV) and Streptococcus pneumoniae are major respiratory pathogens. Co-infection with RSV and S. pneumoniae is associated with severe and often fatal pneumonia but the molecular basis for this remains unclear. Objectives: To determine if interaction between RSV and pneumococci enhances pneumococcal virulence. Methods: We used confocal microscopy and western blot to identify the receptors involved in direct binding of RSV and pneumococci, the effects of which were studied in both in vivo and in vitro models of infection. Human ciliated respiratory epithelial cell cultures were infected with RSV for 72h and then challenged with pneumococci. Pneumococci were collected after 2h exposure and changes in gene expression determined using qRT-PCR. Results: Following incubation with RSV or purified G protein, pneumococci demonstrated a significant increase in the inflammatory response and bacterial adherence to human ciliated epithelial cultures and markedly increased virulence in a pneumonia model in mice. This was associated with extensive changes in the pneumococcal transcriptome and significant upregulation in the expression of key pneumococcal virulence genes, including the gene for the pneumococcal toxin, pneumolysin. We show that mechanistically this is due to RSV G glycoprotein binding penicillin binding protein 1a. Conclusion: The direct interaction between a respiratory virus protein and the pneumococcus resulting in increased bacterial virulence and worsening disease outcome is a new paradigm in respiratory infection. Comparison of the Streptococcus pneumoniae D39 RSV treated compared to BSA Treated in BEBM medium One condition design comparision of two strains including a dye swap
Project description:Rationale: Respiratory syncytial virus (RSV) and Streptococcus pneumoniae are major respiratory pathogens. Co-infection with RSV and S. pneumoniae is associated with severe and often fatal pneumonia but the molecular basis for this remains unclear. Objectives: To determine if interaction between RSV and pneumococci enhances pneumococcal virulence. Methods: We used confocal microscopy and western blot to identify the receptors involved in direct binding of RSV and pneumococci, the effects of which were studied in both in vivo and in vitro models of infection. Human ciliated respiratory epithelial cell cultures were infected with RSV for 72h and then challenged with pneumococci. Pneumococci were collected after 2h exposure and changes in gene expression determined using qRT-PCR. Results: Following incubation with RSV or purified G protein, pneumococci demonstrated a significant increase in the inflammatory response and bacterial adherence to human ciliated epithelial cultures and markedly increased virulence in a pneumonia model in mice. This was associated with extensive changes in the pneumococcal transcriptome and significant upregulation in the expression of key pneumococcal virulence genes, including the gene for the pneumococcal toxin, pneumolysin. We show that mechanistically this is due to RSV G glycoprotein binding penicillin binding protein 1a. Conclusion: The direct interaction between a respiratory virus protein and the pneumococcus resulting in increased bacterial virulence and worsening disease outcome is a new paradigm in respiratory infection. Comparison of the Streptococcus pneumoniae D39 Protein P treated compared to Protein GTreated in BEBM medium One condition design comparision of two strains including a dye swap
Project description:Cell transformation by the Src tyrosine kinase is characterized by extensive changes in gene expression. To describe these changes, investigators have relied extensively on the study of immortalized rodent cell lines or heterogeneous tumor samples that limit the identification of differentially expressed genes or may not represent the full spectrum of biological processes regulated during transformation. In this study, we took advantage of transformation-deficient and temperature sensitive mutants of the Rous sarcoma virus to characterize the patterns of gene expression in two types of primary cells, namely chicken embryo fibroblasts (CEF) and chicken neuro-retinal (CNR) cells. Keywords: viral transformation of primary cells, transformation, transformation deficient mutant, temperature sensitive mutant, v-Src Chicken embryo fibroblasts (CEF) were infected with the wild-type strain Schmidt-Ruppin A RSV or non-transforming strain NY315 RSV or the non-transforming control virus RCASBP(A) to assess genes involved in v-Src-dependent transformation of CEF. Chicken embryo fibroblasts (CEF) were infected with the temperature sensitve strain NY72-4 RSV and cultured either at non-permissive temperature (41.5M-KM-^ZC) or permissive temperature (37M-KM-^ZC) to assess genes involved in v-Src-dependent transformation of CEF. Chicken neuroretina cells (CNR) were infected with the temperature sensitve strain NY72-4 RSV and cultured either at non-permissive temperature (41.5M-KM-^ZC) or permissive temperature (37M-KM-^ZC) to assess genes involved in v-Src-dependent transformation of CNR and compared to CEF.