Project description:Nuclear and cellular expression data from the whole 16-cell stage Arabidopsis thaliana embryo and a cell type-specific expression atlas of the early Arabidopsis embryo
Project description:SuperSeries contain expression data from the nuclei of cell types involved in patterning events, with focus on root apical stem cell formation, at 16-cell stage, early globular stage and late globular stage in the early Arabidopsis embryo (atlas). Expression data comparing nuclear and cellular RNA isolated from whole 16-cell stage Arabidopsis embryos is also included. This SuperSeries is composed of the SubSeries listed below.
Project description:How bacteria from the microbiota modulate the physiology of its host is an important question to address. Previous work revealed that the metabolic status of Arabidopsis thaliana was crucial for the specific recruitment of Streptomycetaceae into the microbiota. Here, the Arabidopsis-Actinacidiphila interaction was further depicted by inoculating axenic Arabidopsis with Actinacidiphila cocklensis DSM 42063 or Actinacidiphila bryophytorum DSM 42138(previously named Streptomyces cocklensis and Streptomyces bryophytorum). We demonstrated that these two bacteria colonize A. thaliana wild-type plants, but their colonization efficiency was reduced in a chs5 mutant with defect in isoprenoid, phenylpropanoids and lipids synthesis. We observed that those bacteria affect the growth of the chs5 mutant but not of the wild-type plants. Using a mass spectrometry-based proteomic approach, we showed a modulation of the Arabidopsis proteome and in particular its components involved in photosynthesis or phytohormone homeostasis or perception by A. cocklensis and A. bryophytorum. This study unveils specific aspects of the Actinacidiphila-Arabidopsis interaction, which implies molecular processes impaired in the chs5 mutant and otherwise at play in the wild-type. More generally, this study highlights complex and distinct molecular interactions between Arabidopsis thaliana and bacteria belonging to the Actinacidiphila genus.
Project description:Untargeted metabolomic analyses were carried out on seed coat/endosperm and seed embryo (dry seeds) of Arabidopsis thaliana Columbia-0 genotype. Three biological replicates were analyzed for each sample.
Project description:Cellular differentiation is associated with changes in transcript populations. Accurate quantification of transcriptomes during development can thus provide global insights into differentiation processes including the fundamental specification and differentiation events operating during plant embryogenesis. However, multiple technical challenges have limited the ability to obtain high quality early embryonic transcriptomes, namely the low amount of RNA obtainable and contamination from surrounding endosperm and seed-coat tissues. We compared the performance of three low-input mRNA sequencing (mRNA-seq) library preparation kits on 0.1 to 5 nanograms (ng) of total RNA isolated from Arabidopsis thaliana (Arabidopsis) embryos and identified a low-cost method with superior performance. This mRNA-seq method was then used to profile the transcriptomes of Arabidopsis embryos across eight developmental stages. By comprehensively comparing embryonic and post-embryonic transcriptomes, we found that embryonic transcriptomes do not resemble any other plant tissue we analyzed. Moreover, transcriptome clustering analyses revealed the presence of four distinct phases of embryogenesis which are enriched in specific biological processes. We also compared zygotic embryo transcriptomes with publicly available somatic embryo transcriptomes. Strikingly, we found little resemblance between zygotic embryos and somatic embryos derived from late-staged zygotic embryos suggesting that somatic and zygotic embryo transcriptomes are distinct from each other. In addition to the biological insights gained from our systematic characterization of the Arabidopsis embryonic transcriptome, we provide a data-rich resource for the community to explore.
Project description:differential expression between wild-type pistils of Arabidopsis thaliana at late 11 to late 12 floral stages, and similar stage pistils of coatlique mutant which lacks a functional embryo sac