Project description:Production of morphologically and physiologically variable seeds is an important strategy that helps plants to survive in unpredictable natural conditions. However, the model plant Arabidopsis thaliana and most agronomically essential crops yield visually homogenous seeds. Using automated phenotype analysis, we observed that in Arabidopsis small seeds tend to have higher primary and secondary dormancy levels when compared to large ones. Transcriptomic analysis revealed distinct gene expression profiles between large and small seeds. Large seeds had higher expression of translation-related genes implicated in germination competence. In contrast, small seeds showed elevated expression of many positive regulators of dormancy, including a key regulator of this process – the DOG1 gene. Differences in DOG1 expression were associated with differential production of its alternative cleavage and polyadenylation isoforms where in small seeds proximal poly(A) site is selected resulting in a short mRNA isoform. Furthermore, single-seed RNA-seq analysis demonstrated that large seeds resemble DOG1 knockout mutant seeds. Finally, on the single seed level, the expression of genes affected by seed size was correlated with the expression of genes positioning seeds on the path towards germination. Our results demonstrate an unexpected link between seed size and dormancy phenotypes in a species producing highly homogenous seed pools, suggesting that the correlation between seed morphology and physiology is more widespread than initially assumed.
Project description:Seed maturation, dormancy and germination are distinct physiological processes. Transition from maturation to dormancy, and from dormancy into germination are not only critical developmental phases in the plant life cycle but are also important agricultural traits. These developmental processes and their phase transitions are fine determined and coordinately regulated by genetic makeup and environmental cues. SCARECROW-LIKE15 (SCL15) has been demonstrated to be essential for repressing the seed maturation programme in vegetative tissues (Gao et al., Nat Commun, 2015, 6:7243). Here we report that SCL15 is also important for seed dormancy maintenance, germination timing and seed vigor performance based on the effects of SCL15 mutation on plant germination, growth and reproduction when compared with wild type Arabidopsis and over-expression lines 35S:SCL15 and Napin:SCL15. Seed dormancy is enhanced by the mutation of SCL15 in a GA signaling dependent way, indicating that SCL15 plays a negative role for primary dormancy release. Seed germination is positively regulated by SCL15 through interaction with ABA, GA and auxin signaling. SCL15 acts as positive regulator of seed vigor and effect of SCL15 mRNA abundance on seed reserve accumulation and seed development during late embryogenesis may contribute to the seed vigor performance.
Project description:Untargeted metabolomic analyses were carried out on seed coat/endosperm and seed embryo (dry seeds) of Arabidopsis thaliana Columbia-0 genotype. Three biological replicates were analyzed for each sample.
Project description:Karrikins promote seed germination in Arabidopsis thaliana. Completion of germination (protrusion of the radicle) is not observed until ~72 h in dormant wildtype seed under these conditions. We used microarrays to examine karrikin-induced transcriptional changes after 24 h of imbibition. Transcriptional changes may indicate events leading to karrikin-induced germination or karrikin-specific markers.
Project description:Multiple factors control primary seed dormancy established during seed maturation and secondary seed dormancy established when a non-dormant seed is exposed to adverse conditions during imbibition. A key player in the control of both primary and secondary dormancy in Arabidopsis thaliana is the DOG1 gene, whose expression is extensively regulated at the transcriptional level. Despite its importance, the influence of posttranscriptional RNA processing and mRNA storage of DOG1 on the determination of dormancy depth remains elusive. We show that the UBA2A protein, a member of the hnRNP family, suppresses primary and secondary seed dormancy through the regulation of the DOG1 gene expres-sion at the posttranscriptional level. Surprisingly, single-molecule FISH, chromatin-attached RNA analysis and Pol II ChIP demonstrated that UBA2A do not control DOG1 gene transcription but rather DOG1 mRNA chromatin retention. Our study highlights chromatin retention as an important step in DOG1 gene expression regulation during dormancy establishment and shows that UBA2A like its human homolog hnRNPAB is implicated in RNA transport in the cell.
Project description:In order to identify differentially expressed genes in developing seeds of Arabidopsis thaliana three different stages of seed development were analysed (9-10, 10-11 and 12-13 days after flower opening) for two Arabidopsis thaliana accessions, Col-0 and C24. For each stage and accession three biological replicates were analysed.