Project description:Epithelial-to-Mesenchymal Transition (EMT) is a key process contributing to the aggressiveness of cancer cells. EMT is triggered by activation of different transcription factors collectively known as EMT-TFs. Different cellular cues and cell signalling networks activate EMT at transcriptional and posttranscriptional level in different biological and pathological situations. Among them, overexpression of LOXL2 (lysyl oxidase-like 2) induces EMT independent of its catalytic activity. Remarkably, perinuclear/cytoplasmic accumulation of LOXL2 is a poor prognosis marker of squamous cell carcinomas and is associated to basal breast cancer metastasis by mechanisms no yet fully understood. Here, we report that overexpression of LOXL2 promotes its accumulation in the Endoplasmic Reticulum where it interacts with HSPA5 leading to activation of the IRE1-XBP1-branch of the Unfolded Protein Response (UPR). LOXL2-dependent UPR activation induces the expression of several EMT-TFs: SNAI1, SNAI2, ZEB2 and TCF3 that are direct transcriptional targets of XBP1. Remarkably, inhibition of IRE1 blocks LOXL2-dependent upregulation of EMT-TFs thus hindering EMT induction. LOXL2 relationship to Endoplasmic Reticulum Stress
Project description:The role of the unfolded protein response (UPR) in the cellular innate response to RSV infection is not fully understood. To better the genomic targets for the IRE1-XBP1 pathway, RNA seq was conducted on RSV-infected small airway cells in the absence or presence of RSV infection and in the absence or presence of a selective IRE1a RNAse inhibitor. We identified expression changes in ~3.2K genes; of these, 279 required IRE1 and were enriched in IL-10 signaling and cytokine signaling pathways. These data indicate that IRE1a-XBP1s regulates genes important in epithelial mesenchymal transition, hexosamine biosynthesis and anti-viral signaling.
Project description:The unfolded protein response (UPR) aims to restore ER homeostasis under conditions of high protein folding load, a function primarily serving secretory cells. Additional, non-canonical UPR functions have recently been unraveled in immune cells. We addressed the function of the inositol-requiring-enzyme 1 (IRE1) signaling branch of the UPR in NK cells in homeostasis and microbial challenge. Cell-intrinsic compound deficiency (DKO) of IRE1 and its downstream transcription factor XBP1 in NKp46 + NK cells, did not affect basal NK cell homeostasis, or overall outcome of viral MCMV infection. However, mixed bone marrow chimeras revealed a competitive advantage in the proliferation of IRE1 sufficient Ly49H + NK cells after viral infection. CITE-Seq analysis confirmed strong induction of IRE1 early upon infection, concomitant with the activation of a canonical UPR signature. Therefore, we conclude that cell-intrinsic IRE1/XBP1 activation is required for NK cell proliferation early upon viral infection, as part of a canonical UPR response.
Project description:The unfolded protein response (UPR) aims to restore ER homeostasis under conditions of high protein folding load, a function primarily serving secretory cells. Additional, non-canonical UPR functions have recently been unraveled in immune cells. We addressed the function of the inositol-requiring-enzyme 1 (IRE1) signaling branch of the UPR in NK cells in homeostasis and microbial challenge. Cell-intrinsic compound deficiency (DKO) of IRE1 and its downstream transcription factor XBP1 in NKp46 + NK cells, did not affect basal NK cell homeostasis, or overall outcome of viral MCMV infection. However, mixed bone marrow chimeras revealed a competitive advantage in the proliferation of IRE1 sufficient Ly49H + NK cells after viral infection. CITE-Seq analysis confirmed strong induction of IRE1 early upon infection, concomitant with the activation of a canonical UPR signature. Therefore, we conclude that cell-intrinsic IRE1/XBP1 activation is required for NK cell proliferation early upon viral infection, as part of a canonical UPR response.
Project description:Comparative oncology is a developing research discipline that is being used to assist our understanding of human neoplastic diseases. Companion canines are a preferred animal oncology model due to spontaneous tumor development and similarity to human disease at the pathophysiological level. We use a paired RNA sequencing (RNA-Seq)/microarray analysis of a set of four normal canine lymph nodes and ten canine lymphoma fine needle aspirates to identify technical biases and variation between the technologies and convergence on biological disease pathways. Surrogate Variable Analysis (SVA) provides a formal multivariate analysis of the combined RNA-Seq/microarray data set. Applying SVA to the data allows us to decompose variation into contributions associated with transcript abundance, differences between the technology, and latent variation within each technology. A substantial and highly statistically significant component of the variation reflects transcript abundance, and RNA-Seq proved more sensitive for detection of transcripts expressed at low levels. Latent random variation among RNA-Seq samples is also distinct in character from that impacting microarray samples. In particular, we observed variation between RNA-Seq samples that reflects transcript GC content. Platform-independent variable decomposition without a priori knowledge of the sources of variation using SVA represents a generalizable method for accomplishing cross-platform data analysis. We identified genes differentially expressed between normal lymph nodes of disease free dogs and a subset of the diseased dogs diagnosed with B-cell lymphoma using each technology. There is statistically significant overlap between the RNA-Seq and microarray sets of differentially expressed genes. Analysis of overlapping genes in the context of biological systems suggests elevated expression and activity of PI3K signaling in B-cell lymphoma biopsies compared with normal biopsies, consistent with literature describing successful use of drugs targeting this pathway in lymphomas.
Project description:Comparative oncology is a developing research discipline that is being used to assist our understanding of human neoplastic diseases. Companion canines are a preferred animal oncology model due to spontaneous tumor development and similarity to human disease at the pathophysiological level. We use a paired RNA sequencing (RNA-Seq)/microarray analysis of a set of four normal canine lymph nodes and ten canine lymphoma fine needle aspirates to identify technical biases and variation between the technologies and convergence on biological disease pathways. Surrogate Variable Analysis (SVA) provides a formal multivariate analysis of the combined RNA-Seq/microarray data set. Applying SVA to the data allows us to decompose variation into contributions associated with transcript abundance, differences between the technology, and latent variation within each technology. A substantial and highly statistically significant component of the variation reflects transcript abundance, and RNA-Seq proved more sensitive for detection of transcripts expressed at low levels. Latent random variation among RNA-Seq samples is also distinct in character from that impacting microarray samples. In particular, we observed variation between RNA-Seq samples that reflects transcript GC content. Platform-independent variable decomposition without a priori knowledge of the sources of variation using SVA represents a generalizable method for accomplishing cross-platform data analysis. We identified genes differentially expressed between normal lymph nodes of disease free dogs and a subset of the diseased dogs diagnosed with B-cell lymphoma using each technology. There is statistically significant overlap between the RNA-Seq and microarray sets of differentially expressed genes. Analysis of overlapping genes in the context of biological systems suggests elevated expression and activity of PI3K signaling in B-cell lymphoma biopsies compared with normal biopsies, consistent with literature describing successful use of drugs targeting this pathway in lymphomas. RNA was extracted from 10 lymphoma fine needle aspirates attained from companion canines. 4 normal lymph node samples were obtained from a Beagle breeding colony at Pfizer, including two samples that were taken from the same dog but different lymph nodes. This Series represents the Affymetrix gene expression only, not RNA-Seq referenced above. RNA-Seq data have been submitted to SRA as SRA059558.
Project description:Animals utilize behavioral signals across a range of different contexts in order to communicate with others and produce probable behavioral outcomes. During play animals frequently adopt action patterns used in other contexts. Researchers have therefore hypothesized that play signals have evolved to clarify communicative intent. One highly stereotyped play signal is the canid play bow, but its function remains contested. In order to clarify how canid puppies use play bows, we used data on play bows in immature wolves (ages 2.7-7.8 months) and dogs (ages 2 to 5 months) to test hypotheses evaluated in a previous study of adult dogs. We found that young dogs used play bows similarly to adult dogs; play bows most often occurred after a brief pause in play followed by complementary highly active play states. However, while the relative number of play bows and total observation time was similar between dog and wolf puppies, wolves did not follow this behavioral pattern, as play bows were unsuccessful in eliciting further play activity by the partner. While some similarities for the function of play bows in dog and wolf puppies were documented, it appears that play bows may function differently in wolf puppies in regards to re-initiating play.