Project description:This research reports genome-wide measurements of genetic and epigenetic patterns of inheritance through an integrative analysis of BS-seq, RNA-seq, and siRNA-seq data in two inbred parents of the Nipponbare (NPB) and Indica (93-11) variety of rice and their hybrid offspring. We generated integrative maps of whole genome cytosine methylation profiles (BS-Seq), transcriptional profiles (RNA-seq), and small RNA profiles (sRNA-seq) to characterize two rice subspecies, Oryza sativa spp japonica (Nipponbare) and Oryza sativa spp indica (93-11) and their two reciprocal hybrid offspring using Illumina's sequencing-by-synthesis (SBS) platform .
Project description:Rice (Oryza sativa), the major staple food crop is being cultivated under varying ecosystems ranging from irrigated lowland to rainfed upland environments. Improvement in the rice production under drought prone unfavourable environment depends on the development of drought tolerant genotypes which needs thorough understanding of physiological and molecular events behind the tolerance mechanism. There is considerable genetic variation for drought tolerance mechanism within the cultivated gene pool. To understand the diversity of drought response, two indica rice genotypes namely, i) Apo, an up-land drought tolerant indica veriety from Philippines and ii) IR64, a popular high yielding drought susceptible genotype were selected for this study. We used the 22K rice Oligoarray from Agilent technologies to study the transcript profile in the leaves of the two contrasting rice genotypes under control and drought stressed conditions during vegetative phase. Keywords: Drought response
Project description:<p>Pigmented rice (<em>Oryza sativa L.</em>) is a rich source of nutrients, but pigmented lines typically have long life cycles and limited productivity. Here we generated genome assemblies of 5 pigmented rice varieties and evaluated the genetic variation among 51 pigmented rice varieties by resequencing an additional 46 varieties. Phylogenetic analyses divided the pigmented varieties into four varietal groups: Geng-japonica, Xian-indica, circum-Aus and circum-Basmati. Metabolomics and ionomics profiling revealed that black rice varieties are rich in aromatic secondary metabolites. We established a regeneration and transformation system and used CRISPR-Cas9 to knock out three flowering time repressors (Hd2, Hd4 and Hd5) in the black Indonesian rice Cempo Ireng, resulting in an early maturing variety with shorter stature. Our study thus provides a multi-omics resource for understanding and improving Asian pigmented rice.</p>
Project description:The current study aimed at segregating the light and nitrate effect in rice plants (Oryza sativa indica). The primary aim of the study was to demarcate the genes that were purely regulated by light and nitrate. A separate list of genes that were co-regulated by these two signals would provide insights into the exact mode of regulation of primary metabolic pathways.
Project description:Rice is a critically important food source but yields worldwide are vulnerable to periods of drought. We exposed eight genotypes of upland and lowland rice (Oryza sativa L. ssp. japonica and indica) to drought stress at the late vegetative stage and harvested leaves for protein extraction and subsequent label-free shotgun proteomics. Gene ontology analysis revealed some differentially expressed proteins were induced by drought in all eight genotypes; we speculate that these play a universal role in drought tolerance. However, some highly genotype-specific patterns of response to drought suggest that some mechanisms of metabolic reprogramming are not universal. Such proteins had largely uncharacterized functions, making them biomarker candidates for drought tolerance screens.
Project description:One of the serious constraints to realize high level of rice crop productivity in agriculture has been due to Soil Water Stress (SWS) situation that growing plants often face. In order to increase or maintain the crop productivity in SWS situation, our initial aim is to understand the drought response mechanism in different genotypes of rice. For thorough analysis of SWS situation in rice we have taken here two wild genotypes of rice namely Oryza nivara, Oryza rufipogon and three Oryza sativa indica cultivars namely Nagina-22, IR20 and Vandana, where IR20 is known to be susceptible and Vandana is known to be tolerant under SWS condition [GSE49364 and the current study]. Global analysis of transcript profiling under SWS condition reveal the actual picture of genes responsive to stress situation in different genetic background of rice. Furthermore it would help us in the selection of most desirable resource for crop breeding without compromising the yield of crop. We used the 44k rice Oligoarray from Agilent technologies to study the expression profiles from five rice genotypes during vegetative (Veg) and grain-filling (GF) stages under varying water conditions, viz. Before Stress (BS), After Stress (AS) and After Recovery (AR).
Project description:Information about protein expression in rice grain across both pigmented and non-pigmented rice varieties is still relatively scarce. The data provided here represent proteomic data obtained from selected 6 Malaysian local rice varieties with varying pigmentations (black, red and white). The selected pigmented rice varieties such as black (BALI and Pulut hitam 9) and red rice (MRQ100 and MRM16) have shown high antioxidant activities and non-pigmented rice (MRQ76 and MR297) contain amino acid and micronutrient contents. This project aimed to obtain global protein expression profile as well as differential protein expression between the selected pigmented and non-pigmented rice varieties particularly proteins with their functions responsible for nutritional (i.e. antioxidant, folate and low glycaemic index) and quality (i.e. aromatic) traits. Integration of this proteomics dataset with other available in-house omics data could facilitate the identification of significant functional markers related to nutritional and quality traits. Total proteins were prepared from dehusked matured seeds harvested from three different rice plants of each variety (3 protein samples per variety). The proteins were trypsin digested before subjected to SWATH-MS proteomics analysis. Proteins were identified by matching tandem mass (MS/MS) spectra from both 1D and 2D IDA to Oryza sativa japonica and indica rice databases available at UniProt by using ProteinPilot software (v4.2) (AB Sciex). Quantification of proteins was carried out by determining protein peak areas extracted from SWATH analysis data sets using PeakView (v2.1) (AB Sciex) software. Differentially expressed protein between varieties were identified using T-test analysis with a set threshold for fold change ± 1.5 and p‐value < 0.05.
Project description:The associated files are mass spec data from individual fractions of mixed-bed ion exchange or size exclusion fractionations of native extract made from rice leaves (Oryza sativa, Kitaake cultivar).