Project description:Glucuronan is a polysaccharide composed of β-(1,4)-linked d-glucuronic acids having intrinsic properties and biological activities recoverable in many fields of application. Currently, the description of Sinorhyzobium meliloti M5N1CS mutant bacterial strain as the sole source of glucuronan makes it relevant to the exploration of new microorganisms producing glucuronan. In this study, the Peteryoungia rosettifformans strain (Rhizobia), was identified as a wild producer of an exopolysaccharide (RhrBR46) related to glucuronan. Structural and biochemical features, using colorimetric assays, Fourier infrared spectroscopy, nuclear magnetic resonance, high pressure size exclusion chromatography coupled to multi-angle light laser scattering, and enzymatic assays allowed the characterization of a polyglucuronic acid, having a molecular mass (Mw¯) of 1.85 × 105 Da, and being partially O-acetylated at C-2 and/or C-3 positions. The concentration of Mg2+ ions in the cultivation medium has been shown to impact the structure of RhrBR46, by reducing drastically its Mw¯ (73%) and increasing its DA (10%). Comparative structural analyses between RhrBR46 and the glucuronan from Sinorhyzobium meliloti M5N1CS strain revealed differences in terms of molecular weight, degree of acetylation (DA), and the distribution of acetylation pattern. These structural divergences of RhrBR46 might contribute to singular properties or biological activities of RhrBR46, offering new perspectives of application.
Project description:Coevolutionary change requires reciprocal selection between interacting species, i.e., that the partner genotypes that are favored in one species depend on the genetic composition of the interacting species. Coevolutionary genetic variation is manifested as genotype ´ genotype (G ´ G) interactions for fitness from interspecific interactions. Although quantitative genetic approaches have revealed abundant evidence for G ´ G interactions in symbioses, the molecular basis of this variation remains unclear. Here we study the molecular basis of G ´ G interactions in a model legume-rhizobium mutualism using gene expression microarrays. We find that, like quantitative traits such as fitness, variation in the symbiotic transcriptome may be partitioned into additive and interactive genetic components. Our results suggest that plant genetic variation is the largest influence on nodule gene expression, and that plant genotype and the plant genotype ´ rhizobium genotype interaction determine global shifts in rhizobium gene expression that in turn feedback to influence plant fitness benefits. Moreover, the transcriptomic variation we uncover implicates regulatory changes in both species as drivers of symbiotic gene expression variation. Our study is the first to partition genetic variation in a symbiotic transcriptome, and illuminates potential molecular routes of coevolutionary change. We assayed gene expression using three biological replicates for each plant genotype × rhizobium genotype combination (4 combinations) for a total of 12 chips.