Project description:Analysis of STAT1 and IRF1 binding in IFNg treated and untreated HeLa cells for 6 hours was done using 50mer oligonucleotide probes at 30bp intervals tiling over non-repetitive 16MB gene locus (HG17).
Project description:Analysis of H3ac, H4ac, STAT1 and IRF1 binding in IFNg treated and untreated HeLa cells for 6 hours was done using 50mer oligonucletide probes at 30bp intervals tiling over non-repetitive 16MB gene locus(HG17) Keywords: ChIP-chip
Project description:Analysis of H3ac, H4ac, STAT1 and IRF1 binding in IFNg treated and untreated HeLa cells for 6 hours was done using 50mer oligonucletide probes at 30bp intervals tiling over non-repetitive 122kb CIITA locus(HG17) Keywords: ChIP-chip
Project description:Analysis of H3ac, H4ac, STAT1 and IRF1 binding in IFNg treated and untreated HeLa cells for 6 hours was done using 50mer oligonucletide probes at 30bp intervals tiling over non-repetitive 16MB gene locus(HG17) Keywords: ChIP-chip three replicates for each marker at each state.
Project description:STAT1 ChIP-chip performed on Human Hela S3 Cells for three different platforms. Nimblegen ENCODE arrays which comprise 50mer oligonucleotides spaces every 38bps (overlapping by 12nts) (5 biological replicates), custom maskless array tiling most of ENCODE with 50mer oligonucleotides end-to-end (3 biological replicates) and custom maskless array tiling most of ENCODE with 36mer oligonucleotides end-to-end (2 biological replicates). The chromatin-immunoprecipitation protocol is the same for all samples, however the labelling and hybridization protocols differ between Nimblegen and custom maskless arrays. Keywords = Transcription Factor Binding, STAT1, ChIP-chip, Human, Genome Tiling Arrays Keywords: other
Project description:DUX4 activates the first wave of zygotic gene expression in the early embryo. Mis-expression of DUX4 in skeletal muscle causes facioscapulohumeral dystrophy (FSHD), whereas expression in cancers suppresses IFNg-induction of MHC Class I and contributes to immune evasion. We show that the DUX4 protein broadly suppresses immune signaling pathways—including IFNg, IFNb, DDX58, IFIH1 and cGAS mediated pathways. A conserved region containing (L)LxxL(L) motifs in the DUX4 carboxyterminal domain (CTD) was necessary to suppress interferon stimulated genes (ISGs). Co-immunoprecipitation identified DUX4-CTD interaction with multiple immune signaling factors, including STAT1. The DUX4-CTD (L)LxxL(L) region interacts with phosphorylated STAT1, sequesters it in the nucleus, modestly reduces its DNA binding, and prevents STAT1 from inducing ISG transcription. Mouse Dux similarly interacted with STAT1 and suppressed IFNg induction of ISGs. These findings identify an evolved role of the DUXC family in modulating immune signaling pathways with implications for development, cancers, and FSHD.
Project description:STAT1 and IRF1 transcription factor enrichment by CUT&RUN. HeLa cells were primed with IFNγ for 24 hours, followed with IFNγ washout. After 48h, naïve and primed cells were induced by IFNγ for 1h and 3h. Cells were harvested at indicated time points and processed for CUT&RUN
Project description:Interleukin-21 (IL-21) is a type 1 cytokine essential for immune cell differentiation and function. Although IL-21 can activate several STAT family transcription factors, previous studies focused mainly on the role of STAT3 in IL-21 signaling. Here, we investigated the role of STAT1 and show that STAT1 and STAT3 have at least partially opposing roles in IL-21 signaling in CD4+ T cells. IL-21 induced STAT1 phosphorylation, and this was augmented in Stat3-deficient CD4+ T cells. RNA-Seq analysis of CD4+ T cells from Stat1- and Stat3-deficient mice revealed that both STAT1 and STAT3 are critical for IL-21-mediated gene regulation. Expression of some genes, including Tbx21 and Ifng, was differentially regulated by STAT1 and STAT3, and interestingly, ChIP-Seq analysis showed that STAT3 binding at Tbx21 and Ifng loci was attenuated in Stat1-deficient cells. Moreover, opposing actions of STAT1 and STAT3 on IFN- expression in CD4+ T cells were demonstrated in vivo during chronic lymphocytic choriomeningitis (LCMV) infection. Finally, IL-21-mediated induction of STAT1 phosphorylation, as well as IFNG and TBX21 expression, were higher in CD4+ T cells from patients with autosomal dominant hyper-IgE syndrome (AD-HIES), which is caused by STAT3 deficiency. These data indicate an interplay between STAT1 and STAT3 in fine-tuning IL-21 actions. Genome-wide transcription factors mapping and binding of STAT3 in mouse CD4+ T cells in both WT and Stat1-deficient mice. RNA-Seq is performed in mouse CD4+ T cells in WT, Stat1-deficient and Stat3-deficient mice.