Project description:Microdochium nivale carbohydrate oxidase was produced by heterologous recombinant expression in Aspergillus oryzae, purified and crystallized. The enzyme crystallizes with varying crystal morphologies depending on the crystallization conditions. Several different crystal forms were obtained using the hanging-drop vapour-diffusion method, two of which were used for diffraction measurements. Hexagon-shaped crystals (form I) diffracted to 2.66 A resolution, with unit-cell parameters a = b = 55.7, c = 610.4 A and apparent space group P6(2)22. Analysis of the data quality showed almost perfect twinning of the crystals. Attempts to solve the structure by molecular replacement did not give satisfactory results. Recently, clusters of rod-shaped crystals (form II) were grown in a solution containing PEG MME 550. These crystals belonged to the monoclinic system C2, with unit-cell parameters a = 132.9, b = 56.6, c = 86.5 A, beta = 95.7 degrees . Data sets were collected to a resolution of 2.4 A. The structure was solved by the molecular-replacement method. Model refinement is currently in progress.
Project description:Brachypodium distachyon is a useful model organism for studying interaction of cereals with phytopathogenic fungi. The present study tested the possibility of a compatible interaction of B. distachyon with the endophytic fungus Microdochium bolleyi originated from wheat roots. There was evaluated the effect of this endophytic fungus on the intensity of the attack by pathogen Fusarium culmorum in B. distachyon and wheat, and also changes in expression of genes (in B. distachyon: BdChitinase1, BdPR1-5, BdLOX3, BdPAL, BdEIN3, and BdAOS; and in wheat: TaB2H2(chitinase), TaPR1.1, TaLOX, TaPAL, TaEIN2, and TaAOS) involved in defence against pathogens. Using light microscopy and newly developed specific primers was found to be root colonization of B. distachyon by the endophyte M. bolleyi. B. distachyon plants, as well as wheat inoculated with M. bolleyi showed significantly weaker symptoms on leaves from infection by fungus F. culmorum than did plants without the endophyte. Expression of genes BdPR1-5, BdChitinase1, and BdLOX3 in B. distachyon and of TaPR1.1 and TaB2H2 in wheat was upregulated after infection with F. culmorum. M. bolleyi-mediated resistance in B. distachyon was independent of the expression of the most tested genes. Taken together, the results of the present study show that B. distachyon can be used as a model host system for endophytic fungus M. bolleyi.