Project description:we performed proteome sequencing in Drosophila at day 7 (young) and day 42 (old) under dietary restriction (DR)and ad libitum (AL) conditions.
Project description:Sir2 is the most intensively discussed longevity gene in current aging research. Although the gene encoding for a NAD+-dependent histone deacetylase initially was found to extend lifespan of various organisms ranging from yeast to mammals, serious doubts regarding its role in longevity have been expressed recently. In this study, we tested whether tissue-specific overexpression of Sir2 in the adult fat body can extend lifespan when compared to genetically identical controls. We also wanted to elucidate the mechanisms by which fat body Sir2 promotes longevity by studying the phenotypic and transcriptional changes in the fat body. We found that moderate (3-fold) Sir2 overexpression in the fat body during adulthood only can promote longevity in both sexes by roughly 13 %. In addition, we obtained transcriptional profiles elicited by this overexpression and propose a role for Sir2 in lipid droplet biology especially under conditions of starvation. Furthermore, our data do not support the idea of Sir2 mediating the response to dietary restriction (DR) because transcriptional profiles of fat bodies after DR or Sir2 overexpression do not match. This study provides additional independent evidence for the concept of Sir2 as a longevity gene and as a promising pharmacological target to cure age-related diseases. 6 groups of sample types were included in the experiment: a) females overexpressing Sir2 in the fat body b) female controls c) males overexpressing Sir2 in the fat body d) male controls e) wildtype females subjected to DR f) wildtype females feeding on a normal diet. 3 biological replicates were included per group.
Project description:Feeding resveratrol to Drosophila melanogaster extends lifespan. Studies of microarray show similarities between calorie/dietary restriction and resveratrol on both a gene expression and biological pathway level.
Project description:Dietary restriction is a nutritional intervention that consistently increases life span in animals. To identify alternative, more acceptable nutritional regimes that nevertheless extend life span, we used the fruit fly Drosophila melanogaster as a model. We tested if weekly recurring nutritional regimes composed of phases of ad libitum feeding and dietary restriction can increase life span. Short periods of dietary restriction (up to 2 days) followed by longer ad libitum phases increased life span only marginally, whereas regimes comprising longer contiguous periods (3 days and more) became clearly positive, reaching similar life span extensions as those seen if dietary restriction was applied persistently. Female flies were substantially more responsive to these interventions than males. The finding that a minimal period of 3-4 days of dietary restriction is required to induce robust life span extensions was mirrored by the observation that substantial physiological and transcriptional changes occurred in a similar temporal pattern. Moreover, these dietary restriction induced changes were also detectable after switching to ad libitum feeding. Among the physiological changes induced by these phases of dietary restriction, a reduced metabolic rate and a substantial and long-lasting reduction in insulin signaling were most compelling. Age associated molecular signatures comprising mechanisms that reduce insulin signaling showed up after longer periods of dietary restriction in the fly’s fat body, thus showing how molecular alterations transduce into life span related physiological changes.
Project description:Dietary restriction (DR) is a robust intervention to slow aging, but how individual tissues respond to DR is largely unknown. We developed a translating ribosome affinity purification method in Drosophila (Fly-TRAP) and investigated mRNA translational profiles of seven primary tissues upon DR. Here we demonstrate that DR alters the mRNA translation expression of proteins genes involved in tissue structural integrity, metabolism, and signal communication in a tissue-specific and coordinated manner. DR enhances the expression of mitochondrial genes in some tissues but decreases in others. Genes involved in mRNA translation were increased specifically in the gut and fat body. A key finding from the study was that DR upregulates several neuroendocrine factors and their corresponding receptors in specific peripheral tissues. Additionally, several a list of secreted factors was in non-neuronal tissues were increased upon changed in response to DR, some of which affected longevity. These results suggest that DR enhances tissue-tissue communication to leading to a longer lifespan and improved tissue homeostasis.