Project description:Multiple myeloma (MM) is still an incurable plasma cell malignancy that generally responds well to treatment intitially, but eventually becomes refractory. In the present study, genomic and transcriptomic changes were investigated in paired early and late tumor samples of MM patients .
Project description:<h4><strong>BACKGROUND:</strong> Multiple myeloma is characterized by clonal proliferation of malignant plasma cells in the bone marrow that produce monoclonal immunoglobulins. N-glycosylation changes of these monoclonal immunoglobulins have been reported in multiple myeloma, but previous studies only detected limited serum N-glycan features.</h4><h4><strong>METHODS:</strong> Here, a more detailed study of the human serum N-glycome of 91 multiple myeloma patients and 51 controls was performed. We additionally analyzed sequential samples from patients (n = 7) which were obtained at different time points during disease development as well as 16 paired blood serum and bone marrow plasma samples. N-glycans were enzymatically released and measured by mass spectrometry after linkage specific derivatization of sialic acids.</h4><h4><strong>RESULTS:</strong> A decrease in both α2,3- and α2,6-sialylation, galactosylation and an increase in fucosylation within complex-type N-glycans were found in multiple myeloma patients compared to controls, as well as a decrease in difucosylation of diantennary glycans. The observed glycosylation changes were present in all ISS stages, including the 'low-risk' ISS I. In individual patients, difucosylation of diantennary glycans decreased with development of the disease. Protein N-glycosylation features from blood and bone marrow showed strong correlation. Moreover, associations of monoclonal immunoglobulin (M-protein) and albumin levels with glycan traits were discovered in multiple myeloma patients.</h4><h4><strong>CONCLUSIONS & GENERAL SIGNIFICANCE: </strong>In conclusion, serum protein N-glycosylation analysis could successfully distinguish multiple myeloma from healthy controls. Further studies are needed to assess the potential roles of glycan trait changes and the associations of glycans with clinical parameters in multiple myeloma early detection and prognosis.</h4>
Project description:We report the genomic localization of 5-hydroxymethylcytosines in multiple myeloma patients through the use of selective chemical labeling (SCL) and exonuclease digestion. Data highlighted super-enhancers and enhancers specifically undergoing active DNA demethylation in multiple myeloma cells.
Project description:Performing GWAS on multiple myeloma in relation to the development of the toxicity neuropathy. This set was used as validation set. We performed a genome-wide association study using Affymetrix HD-SNP arrays 6.0 to identify risk variants for developing bortezomib-induced peripheral neuropathy (BiPN) in 469 multiple myeloma (MM) patients who received bortezomib-dexamethasone therapy prior to autologous stem-cell transplantation and conducted validation in an independent cohort of 116 MM patients. We identified one previously unreported BiPN risk locus at 21q22.3 (rs2839629, PKNOX1; OR = 0.53, 95% CI: [0.40-0.69]). PKNOX1 is known to regulate MCP-1, a potent mediator of chemotherapy-induced peripheral neuropathy. rs2839629 is in strong linkage disequilibrium ( r2 = 0.87) with rs915854, localized 6.5kb centromeric to CBS encoding endogenous H2S-producing enzyme. CBS-H2S signalling pathway is implicated in the pathogenesis of a variety of neurodegenerative and inflammatory disorders, and specifically in neuropathy models. Our data provide conclusive evidence for genetic susceptibility to BiPN in MM and new potential targets in neuro-protective strategies of treatment.
Project description:The aim of this study is to determine copy number variations in the multiple myeloma patients, which were positive for BCL1/JH t(11;14)(q13;q32) translocation. Identification of common chromosomal aberrations representing the t(11;14)(q13;q32) subtype is possible by comparing the microarray data across all the samples under studied. Eight multiple myeloma samples were analyzed. Each sample was compared against normal control (match with patient's race and gender), which was pooled from ten healthy individuals.