Project description:Gene expression profiles of human cell (THP-1) lines exposed to a novel Daboiatoxin (DbTx) isolated from Daboia russelli russelli, and specific cytokines and inflammatory pathways involved in acute infection caused by Burkholderia pseudomallei. Keywords: Melioidosis, Burkholderia pseudomallei, Daboiatoxin, Cytokines, Inflammation.
Project description:The proteome of Muscle Tissue of Threatened Indian walking catfish, Clarias magur (Hamilton 1822) was studied to understand muscle protein expressed.
Project description:The proteome of Muscle Tissue of Threatened Indian walking catfish, Clarias magur (Hamilton 1822) was studied to understand muscle protein expressed.
Project description:We report the application of single-molecule-based sequencing technology for high-throughput profiling of DNA methylations in Burkholderia pseudomallei.
Project description:We report the methylome sequencing and annotation of Burkholderia pseudomallei D286 based on high-throughput profiling using PacBio SMRT technology
Project description:The proteome of Muscle Tissue of Threatened Indian walking catfish, Clarias magur (Hamilton 1822) was studied to understand muscle protein expressed under abiotic temperature stress. The control samples partial sequence can be accessed by PXD027562 and complete sequence by PXD028115 DOI: 10.6019/PXD028115
Project description:Melioidosis, caused by the Gram-negative bacterium Burkholderia pseudomallei, is a disease endemic to South-East Asia and Northern Australia. Clinical presentation is highly variable, ranging from asymptomatic to fatal septicaemia, and thus the outcome of infection can depend on the host immune responses. The aim of this study was to characterise the macrophage immune response to B. pseudomallei in the presence of novel inhibitors targeting the virulence factor, Macrophage Infectivity Potentiator (Mip) protein. To do this. murine macrophage J774A.1 cells were infected with B. pseudomallei K96243 in the presence and absence of two small-molecule inhibitors designed to target the Mip protein. Global transcriptional profiling of macrophages infected with B. pseudomallei was analysed by RNA-Seq four hours post-infection. In the presence of Mip inhibitors, we found a significant reduction in the expression of pro-inflammatory cytokines highlighting the potential to utilize Mip inhibitors to dampen potentially harmful pro-inflammatory responses resulting from B. pseudomallei infection in macrophages. We then performed gene expression profiling analysis using data obtained from RNA-seq of J774A.1 macrophages infected with Burkholderia pseudomallei in the presence of two Mip inhibitors or vehicle control 4 hours post-infection