Project description:Metagenome data from soil samples were collected at 0 to 10cm deep from 2 avocado orchards in Channybearup, Western Australia, in 2024. Amplicon sequence variant (ASV) tables were constructed based on the DADA2 pipeline with default parameters.
Project description:The roots of halophytes such as mangroves provide the first line of defense against the constant salt stress they experience. Such adaptation should include major reprogramming of the gene expression profiles. Using RNA-sequencing approach we identified 101,446 ‘all-unigenes’ from the seedling roots of the mangrove tree Avicennia officinalis. From the data 6618 genes were identified to be differentially regulated by salt when two-month-old greenhouse-grown seedlings without prior exposure to sea water were subjected to 24 h of 500 mM NaCl treatment. About 1,404 genes were significantly up-regulated, while 5214 genes were down-regulated. Based on Gene Ontology analysis, they could be classified under various categories, including metabolic processes, stress and defense response, signal transduction, transcription-related and transporters. Our analysis provides the baseline information towards understanding salt balance in mangroves and hence mechanism of salt tolerance in plants.
Project description:This study reports the analyses of the rhizospheric microbiome of the terrestrial mangrove fern Acrostichum aureum Linn. from the Indian Sunderbans. Samples were collected using standard protocols and 16S rRNA gene V3-V4 region amplicon sequencing was performed to identify the microbial communities prevalent in the rhizosphere. A total of 1,931,252 quality checked reads were assembled into 204,818 contigs and were analysed using QIIME to reveal the abundance of Proteobacteria, Acidobacteria and Planctomycetes. The data is available at the NCBI - Sequence Read Archive with accession number: SRX2660456. This is the first report of the rhizospheric microbiome belonging to a fern species.