Project description:Eukaryotic ribosome biogenesis begins with the co-transcriptional assembly of the 90S pre-ribosome. The ‘U three protein’ (UTP) complexes and snoRNA particles arrange around the nascent pre-ribosomal RNA chaperoning its folding and further maturation. The earliest event in this hierarchical process is the binding of the UTP-A complex to the 5’-end of the pre-ribosomal RNA (5’-ETS). This oligomeric complex predominantly consists of β-propeller and α-solenoidal proteins. Here we present the structure of the Utp4 subunit from the thermophilic fungus Chaetomium thermophilum at 2.15 Å resolution and analyze its function by UV RNA-crosslinking (CRAC) and in context of a recent cryo-EM structure of the 90S pre-ribosome. Utp4 consists of two orthogonal and highly basic β-propellers that perfectly fit the EM-data. The Utp4 structure highlights an unusual Velcro-closure of its C-terminal β-propeller as relevant for protein integrity and Utp8 recognition in the context of the pre-ribosome. We provide a first model of the 5’-ETS RNA from an internally hidden 5’-end up to the region that hybridizes to the 3’-hinge sequence of U3 snoRNA and validate a specific Utp4/5’-ETS interaction by CRAC analysis. Altogether Utp4 is central to the UTP-A complex and organizes the 5’-ETS for further maturation.
Project description:Eukaryotic ribosome biogenesis begins with the co-transcriptional assembly of the 90S pre-ribosome. The 'U three protein' (UTP) complexes and snoRNP particles arrange around the nascent pre-ribosomal RNA chaperoning its folding and further maturation. The earliest event in this hierarchical process is the binding of the UTP-A complex to the 5'-end of the pre-ribosomal RNA (5'-ETS). This oligomeric complex predominantly consists of β-propeller and α-solenoidal proteins. Here we present the structure of the Utp4 subunit from the thermophilic fungus Chaetomium thermophilum at 2.15 Å resolution and analyze its function by UV RNA-crosslinking (CRAC) and in context of a recent cryo-EM structure of the 90S pre-ribosome. Utp4 consists of two orthogonal and highly basic β-propellers that perfectly fit the EM-data. The Utp4 structure highlights an unusual Velcro-closure of its C-terminal β-propeller as relevant for protein integrity and potentially Utp8 recognition in the context of the pre-ribosome. We provide a first model of the 5'-ETS RNA from the internally hidden 5'-end up to the region that hybridizes to the 3'-hinge sequence of U3 snoRNA and validate a specific Utp4/5'-ETS interaction by CRAC analysis.
Project description:Ribosome biogenesis requires auxiliary factors to promote folding and assembly of ribosomal proteins and RNA. Particularly, maturation of the peptidyl transferase center (PTC) is mediated by conserved GTPases, but the molecular basis is poorly understood. Here, we define the mechanism of GTPase-driven maturation of the human mitochondrial large ribosomal subunit (mtLSU) using endogenous complex purification, in vitro reconstitution and cryo-EM. Structures of transient native mtLSU assembly intermediates that accumulate in GTPBP6-deficient cells reveal how the biogenesis factors GTPBP5, MTERF4 and NSUN4 facilitate PTC folding. Addition of recombinant GTPBP6 reconstitutes late mtLSU biogenesis in vitro and shows that GTPBP6 triggers a molecular switch and progression to a near-mature PTC state. Additionally, cryo-EM analysis of GTPBP6-treated mature mitochondrial ribosomes reveals the structural basis for the dual-role of GTPBP6 in ribosome biogenesis and recycling. Together, these results provide a framework for understanding step-wise PTC folding as a critical conserved quality control checkpoint.
Project description:MALAT1 lncRNA plays key roles in regulating transcription, splicing, and tumorigenesis. Its maturation and stabilization require precise processing by RNase P, which simultaneously initiates the biogenesis of a 3′ cytoplasmic mascRNA. mascRNA was proposed to fold into a tRNA-like secondary structure, but lacks eight conserved linking residues required by the canonical tRNA fold. Here, we report crystal structures of human mascRNA before and after processing, which reveal an ultracompact, quasi-tRNA-like structure. Despite lacking all linker residues, mascRNA faithfully recreates the characteristic “elbow” feature of tRNAs to recruit RNase P and ELAC2 for processing, which exhibit distinct substrate specificities. Rotation and repositioning of the D-stem and anticodon regions preclude mascRNA from aminoacylation, avoiding interference with translation. Therefore, a class of metazoan lncRNAs employ a previously unrecognized, unusually streamlined quasi-tRNA architecture to recruit select tRNA-processing enzymes while excluding others, to drive bespoke RNA biogenesis, processing, and maturation.
Project description:The MYC oncogene promoter G-quadruplex (MycG4) regulates transcription and is a prevalent G4 locus in immortal cells. Nucleolin, a major MycG4-binding protein, exhibits greater affinity for MycG4 than for nucleolin recognition element (NRE) RNA. Nucleolin's four RNA binding domains (RBDs) are essential for high-affinity MycG4 binding. We present the 2.6-angstrom crystal structure of the nucleolin-MycG4 complex, revealing a folded parallel three-tetrad G-quadruplex with two coordinating potassium ions (K+), interacting with RBD1, RBD2, and Linker12 through its 6-nucleotide (nt) central loop and 5' flanking region. RBD3 and RBD4 bind MycG4's 1-nt loops as demonstrated by nuclear magnetic resonance (NMR). Cleavage under targets and tagmentation sequencing confirmed nucleolin's binding to MycG4 in cells. Our results revealed a G4 conformation-based recognition by a regulating protein through multivalent interactions, suggesting that G4s are nucleolin's primary cellular substrates, indicating G4 epigenetic transcriptional regulation and helping G4-targeted drug discovery.
Project description:Here we report the cryo-electron microscopy (cryo-EM) structures of SUV420H1 associated with canonical nucleosome core particles (NCPs) or H2AZ containing NCPs. We find that SUV420H1 shows conformational change after bound to a nucleosome and make extensive site-specific contacts with histone and DNA regions, thus enabling H4K20 insertion for catalysis specifically. Through in vivo functional analysis, we validated special residues of SUV420H1 that are critical for its catalytic activity and function in chromatin state regulation.Thus, our study provides molecular insights into the nucleosome-based recognition and histone- methylation mechanisms of SUV420H1.