Project description:Switchgrass (Panicum virgatum) has been developed into a model lignocellulosic bioenergy crop. Downregulation of caffeic acid O-methyltransferase (COMT), a key enzyme in lignin biosynthesis, led to altered lignification and increased biofuel yield in switchgrass. Methylenetetrahydrofolate reductase (MTHFR) mediated C1 metabolism provides methyl units consumed by COMT. It was predicted that co-silencing of MTHFR and COMT would have a more significant impact on lignification than either of the single genes. However, our results showed that strong downregulation of MTHFR in a COMT-deficient background led to altered plant growth and development, but no significant change in lignin content or composition was found when compared with COMT plants. Another unexpected finding is that the double MTHFR/COMT downregulated plants showed a novel lesion-mimic leaf phenotype. Molecular analyses revealed that the lesion-mimic phenotype was caused by the synergistic effect of MTHFR and COMT genes, with MTHFR playing a predominant role. Microarray analysis showed significant induction of genes involved in oxidative and defenserelated processes. The results demonstrated the lack of additive effects of MTHFR and COMT on lignification. Furthermore, this research revealed an unexpected role of the two genes in the modulation of lesion-mimic cell death as well as their synergetic effects on agronomic performance.
Project description:Catechol-O-methyl transferase (COMT) is involved in detoxification of catechol estrogens, playing cancer-protective role in cells producing or utilizing estrogen. Moreover, COMT suppressed migration potential of breast cancer (BC) cells. To delineate COMT role in metastasis of estrogen receptor (ER) dependent BC, we investigated the effect of COMT overexpression on invasion, transcriptome, proteome and interactome of MCF7 cells, a luminal A BC model, stably transduced with lentiviral vector carrying COMT gene (MCF7-COMT). We performed comparative gene expression analysis using data obtained from RNA-seq of COMT-overexpressing and control cells in biological duplicates.
Project description:Supplementation with high doses of folic acid, an important mediator of one-carbon transfers for DNA methylation, is used clinically to improve sperm parameters in infertile men. We recently detected an unexpected loss of DNA methylation in the sperm of idiopathic infertile men after 6 months of daily supplementation with 5mg folic acid (>10× the daily recommended intake-DRI), exacerbated in men homozygous for a common variant in the gene encoding an important enzyme in folate metabolism, methylenetetrahydrofolate reductase (MTHFR 677C>T). To investigate the epigenomic impact and mechanism underlying effects of folic acid on male germ cells, wildtype and heterozygote mice for a targeted inactivation of the Mthfr gene were fed high-dose folic acid (10× the DRI) or control diets for six months. No changes were detected in general health, sperm counts or methylation of imprinted genes. Reduced representation bisulfite sequencing revealed sperm DNA hypomethylation in Mthfr+/- mice on the 10× diets. Wildtype mice demonstrated sperm hypomethylation only with a very high dose (20×) of folic acid for 12 months. Testicular MTHFR protein levels decreased significantly in wildtype mice on the 20× diet but not in those on the 10× diet, suggesting a possible role for MTHFR deficiency in sperm DNA hypomethylation. In-depth analysis of the folic acid-exposed sperm DNA methylome suggested mouse/human susceptibility of sequences with potential importance to germ cell and embryo development. Our data provide evidence for a similar cross-species response to high dose folic acid supplementation, of sperm DNA hypomethylation, and implicate MTHFR downregulation as a possible mechanism.
Project description:Catechol O-methyl transferase (COMT), a transmembrane protein essential for catechol estrogen detoxification, has been associated with increased migration in triple negative breast cancer (TNBC) in our previous study. Here we studied the role of COMT in TNBC functionally using two clones (B1, D10) of MDA-MB-231 cells with knock-out expression of COMT compared with parental cell line. We performed comparative gene expression analysis using data obtained from RNA-seq of cells with silenced COMT and control cells in biological duplicates.