Project description:To evaluate targeted MinION next generation sequencing as a diagnostic method for detection of pathogens in human blood and plasma, human blood or plasma samples were spiked with measured amounts of viruses, bacteria, protozoan parasites or tested pathogen-free as negative controls. Nucleic acid was extracted from samples and PCR amplification performed in multiplex primer pools with a procedure described in ArrayExpress experiment submission ID 18379. The PCR products were used for library preparation. The libraries sequenced on an Oxford Nanopore MinION. The passed reads aligned with a custom reference file to determine the identity of the pathogen in the sample.
Project description:S. meliloti strains with a bi- and monopartite genome configuration were constructed by consecutive Cre/lox-mediated site-specific fusions of the secondary replicons. Beside the correct genomic arrangements, these strains and precursors were tested for variations in the nucleotide sequence. Futher, a marker fequency analysis was performed to test if replication is initiated at all origins and to determine the replication termination regions of the triple replicon fusion molecule. To gain the sequence data for these analyses, respective strains were applied to whole genome sequencing using an Illumina MiSeq-System and Oxford Nanopore (MinION) sequencing technology.
Project description:We applied direct RNA long read sequencing for characterization of transcripts from constructs inserted into HEK293T mammalian cells with different promoters. Direct RNA sequencing was performed on an Oxford Nanopore GridION device using the Direct Sequencing Kit (SQK-RNA004, date accessed 15 May 2024), MinION RNA flow cell (FLO-MIN00RA), and data pre-processing was performed with MinKNOW (v24.06.10).
Project description:The genome of two isogenic lines from Aedes aegypti from Ile Royale, French Guiana, with a marked difference in resistance to deltamethrin was investigated in order to understand the genetic basis of this phenotypic difference. Genomic sequencing was performed both with Illumina short, paired reads and with Minion long reads.
Project description:Aedes aegypti mosquitoes are important vectors of viral diseases. Mosquito host factors play important roles in virus control and it has been suggested that Dengue virus replication is regulated by Dnmt2-mediated DNA methylation. However, recent studies have shown that Dnmt2 is a tRNA methyltransferase and that Dnmt2-dependent methylomes lack defined DNA methylation patterns, thus necessitating a systematic re-evaluation of the mosquito genome methylation status. We have now searched the A. aegypti genome for candidate DNA modification enzymes. This failed to reveal any known (cytosine-5) DNA methyltransferases, but identified homologues for the Dnmt2 tRNA methyltransferase, the Mettl4 (adenine-6) DNA methyltransferase, and the Tet DNA demethylase. All genes were expressed at variable levels throughout mosquito development. Mass spectrometry demonstrated that DNA methylation levels were several orders of magnitude below the levels that are usually detected in organisms with DNA methylation-dependent epigenetic regulation. Furthermore, whole-genome bisulfite sequencing failed to reveal any evidence of defined DNA methylation patterns. These results suggest that the A. aegypti genome is unmethylated. Interestingly, additional RNA bisulfite sequencing provided evidence for Dnmt2-mediated tRNA methylation in mosquitoes. These findings have important implications for understanding the mechanism of Dnmt2-dependent virus control.
Project description:Microarray analysis on days 1, 2 and 7 post-infection with dengue, yellow fever and West Nile virus in Aedes aegypti Rockefeller strain mosquitoes RNA was purified and hybridized with Nimblegen X4 microarray chips using 81-mer probes designed from 18,000 open reading frames (ORF) found in the Ae. aegypti genome, with 2 different probes per ORF
Project description:Transfer RNAs are the fundamental adapter molecules of protein synthesis and the most abundant and heterogeneous class of noncoding RNA molecules in cells. The study of tRNA repertoires remains challenging, complicated by the presence of dozens of post transcriptional modifications. Nanopore sequencing is an emerging technology with promise for both tRNA sequencing and the detection of RNA modifications; however, such studies have been limited by the throughput and accuracy of direct RNA sequencing methods. Moreover, detection of the complete set of tRNA modifications by nanopore sequencing remains challenging. Here we show that recent updates to nanopore direct RNA sequencing chemistry (RNA004) combined with our own optimizations to tRNA sequencing protocols and analysis workflows enable high throughput coverage of tRNA molecules and characterization of nanopore signals produced by 43 distinct RNA modifications. We share best practices and protocols for nanopore sequencing of tRNA and further report successful detection of low abundance mitochondrial and viral tRNAs, providing proof of concept for use of nanopore sequencing to study tRNA populations in the context of infection and organelle biology. This work provides a roadmap to guide future efforts towards de novo detection of RNA modifications across multiple organisms using nanopore sequencing.
Project description:Zika virus (ZIKV) of the Flaviviridae family is a recently emerged mosquito-borne virus that has been implicated in the surge of the number of microcephaly instances in south America. The virus is transmitted mainly by the mosquito Aedes aegypti that also vectors dengue virus. Considering rather recent rapid spread of the virus and its declaration as a global health emergency by the World Health Organization, little is known about the interactions of the virus with the mosquito vector. In this study, we investigated the transcriptome profiles of whole Ae. aegypti mosquitoes in response to ZIKV infection at 2, 7 and 14 days post-infection using deep sequencing. Results showed a large number of transcripts were altered at each time point following infection, but 18 transcripts were commonly changed at the three time points. The outcomes provide a basic understanding of Ae. aegypti responses to ZIKV and help determining host factors involved in replication or anti-viral response against the virus.
Project description:Efficient virus replication in its vector, Aedes mosquitoes, is essential for the transmission of arboviral diseases like dengue virus (DENV) in populations. In order to identify RNA-independent host factors involved in DENV replication in mosquitoes, we established a system expressing all non-structural proteins within the context of the macro protein complex as observed during viral infections. We GFP-tagged Loqs to purify it's interactors by label-free mass spectrometry.