Project description:Several studies have shown an association of alcohol dependence with DNA methylation, suggesting that environmentally-induced changes on epigenomic variation may play an important role in alcohol dependence. In the present study, we analyzed genome-wide DNA methylation profiles of purified CD3+ T-cells from pre- and post-treatment alcohol dependent patients, as well as closely matched healthy controls. We identified 59 differentially methylated CpG sites comparing patients prior to treatment with healthy controls and were able to confirm 8 of those sites in additional analyses for differentially methylated regions. Comparing patients before and after a 3-week alcohol treatment program we revealed another unique set of 48 differentially methylated CpG sites. Additionally, we found that the mean global DNA methylation was significantly lower in patients prior to treatment compared to controls, but reverted back to levels similar to controls after treatment. We validated top-ranked hits derived from the epigenome-wide analysis by pyrosequencing and further replicated two of them in an independent cohort and confirmed differential DNA methylation of HECW2 and SRPK3 in whole blood. This study is the first to show widespread DNAm variation in a disease-relevant blood cell type and implicates HECW2 and SRPK3 DNAm as promising candidates to follow up in future studies.
Project description:Chronic alcohol abuse has a detrimental effect on the brain and liver. There is no effective treatment for these patients and the mechanism underlying alcohol addiction and consequent alcohol-induced damage of the liver/brain axis remains unresolved. We compared experimental models of alcoholic liver disease (ALD) and alcohol dependence in mice and demonstrated that genetic ablation of IL17 Receptor A (IL17ra-/-), or pharmacological blockade of IL17 signaling effectively suppressed the increased voluntary alcohol drinking in alcohol-dependent mice, and blocked alcohol-induced hepatocellular and neurological damage. The level of circulating IL17A positively correlated with the alcohol use in excessive drinkers, and was further increased in patients with ALD as compared to healthy individuals. Our data suggest that IL17A is a common mediator of excessive alcohol consumption and alcohol-induced liver/brain injury, and targeting IL17A may provide a novel strategy for treatment of alcohol-induced pathology.
Project description:Using fluorescence-activated cell sorting, we isolated blood and tumor-infiltrating CD3-CD56+ NK and CD3+ T cells and CD45- viable tumor cells from STS patients undergoing surgery. We then evaluated differential gene expression (DGE) of these purified populations with RNA sequencing analysis
Project description:Purpose: Alcohol dependence results in microglia proliferation in brain and changes in microglia morphology and function. However, it remains unknown if microglia initiate or simply amplify the neuroadaptations that lead to alcohol dependence. Here we determined microglia function in chronic intermittent ethanol exposure behaviors using a colony stimulating factor 1 receptor inhibitor (PLX5622) and 3’UTR biased-sequencing. Therefore, the purpose of this study was to provide insight into how microglia may regulate neuroadaptations due to alcohol dependence. Methods: We performed 3’UTR biased transcriptome sequencing (3’Tag-seq) on total homogenate isolated from the prefrontal cortex (PFC) and central nucleus of the amygdala (CeA) of C57BL6/J mice following microglia depletion and chronic intermittent ethanol exposure. Results: Differential expression analysis and WGCNA network analysis revealed that microglia depletion prevents both immune and synaptic gene expression changes that are linked with the formation of alcohol dependence. This suggested that microglia are key regulators of the transition from alcohol misuse to alcohol dependence. Conclusion: Taken together our behavioral and transcriptional data indicate that microglia are the primary effector cell responsible for regulation of alcohol dependence. In addition, our data represents a novel resource for groups interested in transcriptional effects of microglia depletion after alcohol dependence.
Project description:Alcohol Use Disorder (AUD) is a chronic, relapsing syndrome diagnosed by a heterogeneous set of behavioral signs and symptoms. There are no laboratory tests that provide direct objective evidence for diagnosis. Microarray and RNA-Seq technologies enable genome-wide transcriptome profiling at low costs and provide an opportunity to identify biomarkers to facilitate diagnosis, prognosis, and treatment of patients. Brain gene expression patterns can discriminate alcohol-dependent and non-dependent people and predict drugs that reduce drinking in rodents. However, access to brain tissue in living patients is not possible. Blood contains cellular and extracellular RNAs that provide disease-relevant information for some brain diseases. We hypothesized that blood gene expression profiles can be used to diagnose AUD. We profiled brain (prefrontal cortex, amygdala, and hypothalamus) and blood gene expression levels in C57BL/6J mice using RNA-seq one week after chronic intermittent ethanol (CIE) exposure, a mouse model of alcohol dependence. To determine the preservation of gene expression levels between blood and brain, we calculated the Spearman correlation coefficient between blood and brain mean gene expression levels across all subjects and found a high degree of preservation (rho range: [0.50, 0.67]) with hundreds of transcripts in blood correlated with their brain transcript levels. To determine whether the transcriptional response to alcohol dependence was similar in blood and brain, we studied the overlapping differentially expressed genes (DEGs) and gene coexpression networks. Although there was small overlap between blood and brain DEGs, there was considerable overlap of gene networks perturbed after CIE related to cell-cell signaling (e.g., GABA and glutamate receptor signaling, endocannabinoid signaling, synaptogenesis), immune responses (e.g., antigen presentation, communication between innate and adaptive immune systems), and protein processing / mitochondrial functioning (e.g., ubiquitination, unfolded protein responses, oxidative phosphorylation). To determine whether blood gene expression can predict alcohol dependence status, blood gene expression data were used to train classifiers (logistic regression, random forest, and partial least squares discriminant analysis), which were highly accurate at predicting alcohol dependence status (maximum AUC for females: 90.1%; males: 80.5%). These results suggest that gene expression profiles from peripheral blood samples contain a biological signature of alcohol dependence that can discriminate between alcohol-dependent and non-dependent subjects.
Project description:The prefrontal cortex is a crucial regulator of escalation of alcohol drinking, dependence, and other behavioral criteria associated with AUD. Comprehensive identification of cell-type specific transcriptomic changes in alcohol dependence will improve our understanding of mechanisms mediating the escalation of alcohol use and will refine targets for therapeutic development. We performed single nucleus RNA sequencing (snRNA-seq) on ~150,000 single nuclei from the medial prefrontal cortex (mPFC) obtained from C57BL/6J mice exposed to the chronic intermittent ethanol exposure (CIE) paradigm which models phenotypes associated with alcohol dependence. Gene co-expression network analysis and differential expression analysis identified highly dysregulated co-expression networks in multiple cell types. Here, we present a comprehensive atlas of cell-type specific alcohol dependence related gene expression changes in the mPFC.
Project description:Global transcriptional analysis of chronic DZP administrated mouse brain using microarrays identified some up- and down- regulated genes after chronic DZP administrations. Diazepam (DZP), a medication of the benzodiazepine family, is widely used to treat various conditions including anxiety, muscle spasms, seizures, trouble sleeping, and alcohol withdrawal syndrome. Chronic DZP treatment has significant risks such as tolerance, dependence, withdrawal effect and Alzheimer's disease. As the molecular mechanisms of these risks were complex processes, global analysis has been required.