ABSTRACT: Transcriptional profiling of bladder carcinoma T24 cells following CD40 activation by membrane-bound CD40L (mCD40L) compared to soluble CD40L (sCD40L)
Project description:Expression of CD40 in non-hematopoietic cells has been linked to inflammation. We presented evidence that CD40, a T-cell costimulatory molecule, is expressed in human β-cells and the engagement of CD40 in insulinoma cells activated the NFKB and ERK1/2 pathways. CD40 activation in human islets cells induced secretion of IL-8, MCP-1 and MIP-1 β, which is abrogated by inhibitors of NFkB and ERK1/2 inhibitors. In this study, we have studied gene expression mediated by CD40-CD40L interaction in islet cells. This approach identified 90 genes and transcripts exhibiting at least a 1.7 fold increase in their expression intensity after treatment with soluble CD40L. A significant number of genes were related to inflammation and oxidative stress. We have a strong overexpression of CXCL1 (Groα), CXCL2 (Mif2) and CXCL3; chemokines belonging to CXC family structurally related to Il-8. 11 genes were selected from this group and further quantified by Real Time PCR, including CXCL1. Activation of islet cells with CD40L induced the secretion of CXCL1 in a NFKB dependent manner. Engagement of CD40 in islet cells did not induce apoptosis, neither β-cell death and did not enhanced TNF-α mediated cell death as observed in insulinoma cells. CD40 activation in insulinoma cells, results in ERK1/2 dependent phsophorylation of synapsin I, a protein associated with the exocytosis machinery in neurons and β-cells. However, treatment of islets with soluble CD40L did not affect glucose induced insulin secretion. It has been reported that ductal cells always present in human islet preparations express CD40 constitutively (ref). We found that CD40-CD40L interaction in ductal cells, unlike in β-cells, induces secretion of diabetogenic cytokines IFNγ and TNF-α. Furthermore, incubation of islets containing ductal cells with CD40L decreased β-cells viability as assessed by measurement of their mitochondrial membrane potential Experiment Overall Design: We isolated islet cells from three patients. Part of islet cells from each patient has been treated with CD40L. We compared gene expression in treated cells vs untreated for each patient using dye-swap.
Project description:We utilised the Affymetrix microarray analysis to compare the expression profiling of the CD40-positive bladder carcinoma T24 cells expressing mCD40L delivered by a replication-deficient adenovirus (RAdnCD40L) or treated with sCD40L (1µg/ml) for 24 hours
Project description:Expression of CD40 in non-hematopoietic cells has been linked to inflammation. We presented evidence that CD40, a T-cell costimulatory molecule, is expressed in human β-cells and the engagement of CD40 in insulinoma cells activated the NFKB and ERK1/2 pathways. CD40 activation in human islets cells induced secretion of IL-8, MCP-1 and MIP-1 β, which is abrogated by inhibitors of NFkB and ERK1/2 inhibitors. In this study, we have studied gene expression mediated by CD40-CD40L interaction in islet cells. This approach identified 90 genes and transcripts exhibiting at least a 1.7 fold increase in their expression intensity after treatment with soluble CD40L. A significant number of genes were related to inflammation and oxidative stress. We have a strong overexpression of CXCL1 (Groα), CXCL2 (Mif2) and CXCL3; chemokines belonging to CXC family structurally related to Il-8. 11 genes were selected from this group and further quantified by Real Time PCR, including CXCL1. Activation of islet cells with CD40L induced the secretion of CXCL1 in a NFKB dependent manner. Engagement of CD40 in islet cells did not induce apoptosis, neither β-cell death and did not enhanced TNF-α mediated cell death as observed in insulinoma cells. CD40 activation in insulinoma cells, results in ERK1/2 dependent phsophorylation of synapsin I, a protein associated with the exocytosis machinery in neurons and β-cells. However, treatment of islets with soluble CD40L did not affect glucose induced insulin secretion. It has been reported that ductal cells always present in human islet preparations express CD40 constitutively (ref). We found that CD40-CD40L interaction in ductal cells, unlike in β-cells, induces secretion of diabetogenic cytokines IFNγ and TNF-α. Furthermore, incubation of islets containing ductal cells with CD40L decreased β-cells viability as assessed by measurement of their mitochondrial membrane potential Keywords: Pancreas, Islets of Langerhans, chemokines, cytokines, inflammation, apoptosis, Nuclear Factor-κB(NFκB)
Project description:PURPOSE: Despite over 70,000 new cases of bladder cancer in the United States annually, patients with advanced disease have a poor prognosis due to limited treatment modalities. We evaluate the role of Aurora A, identified as an upregulated candidate molecule in bladder cancer, in regulating bladder tumor growth. EXPERIMENTAL DESIGN: Gene expression in human bladder cancer samples was evaluated using RNA microarray and reverse-transcriptase PCR. The specific Aurora kinase A inhibitor MLN8237 (Millennium) was used to determine effects on bladder cancer cell growth using in vitro and in vivo models using malignant T24 and UM-UC-3 and papilloma-derived RT4 bladder cells. RESULTS: Urothelial carcinoma upregulates a set of 13 mitotic spindle associated transcripts, as compared to normal urothelium, including MAD2L1 (7.6-fold), BUB1B (8.8-fold), Aurora kinases A (5.6-fold) and Aurora kinase B (6.2-fold). Application of MLN8237 (10nM-1µM) to the human bladder tumor cell lines T24 and UM-UC-3 induced dose-dependent G2 cell cycle arrest, aneuploidy, mitotic spindle abnormalities, and apoptosis. MLN8237 arrested tumor growth when administered orally over 4 weeks in a mouse bladder cancer xenograft model (p<0.05). Finally, in vitro combination of MLN8237 with either paclitaxel or gemcitabine produced schedule-dependent synergistic antiproliferative effects in T24 cells when administered sequentially. CONCLUSIONS: Mitotic spindle checkpoint dysfunction is a common characteristic of human urothelial carcinoma, and can be exploited with pharmacologic Aurora A inhibition. Future studies that explore the mechanisms of spindle checkpoint failure in bladder cancer and evaluate the therapeutic role of Aurora kinases for bladder cancer patients would be of value. Tissue samples with urothelial cell carcinoma from bladder as well as normal references were collected and the gene expression profiles were compared. No technical replicates.
Project description:PURPOSE: Despite over 70,000 new cases of bladder cancer in the United States annually, patients with advanced disease have a poor prognosis due to limited treatment modalities. We evaluate the role of Aurora A, identified as an upregulated candidate molecule in bladder cancer, in regulating bladder tumor growth. EXPERIMENTAL DESIGN: Gene expression in human bladder cancer samples was evaluated using RNA microarray and reverse-transcriptase PCR. The specific Aurora kinase A inhibitor MLN8237 (Millennium) was used to determine effects on bladder cancer cell growth using in vitro and in vivo models using malignant T24 and UM-UC-3 and papilloma-derived RT4 bladder cells. RESULTS: Urothelial carcinoma upregulates a set of 13 mitotic spindle associated transcripts, as compared to normal urothelium, including MAD2L1 (7.6-fold), BUB1B (8.8-fold), Aurora kinases A (5.6-fold) and Aurora kinase B (6.2-fold). Application of MLN8237 (10nM-1µM) to the human bladder tumor cell lines T24 and UM-UC-3 induced dose-dependent G2 cell cycle arrest, aneuploidy, mitotic spindle abnormalities, and apoptosis. MLN8237 arrested tumor growth when administered orally over 4 weeks in a mouse bladder cancer xenograft model (p<0.05). Finally, in vitro combination of MLN8237 with either paclitaxel or gemcitabine produced schedule-dependent synergistic antiproliferative effects in T24 cells when administered sequentially. CONCLUSIONS: Mitotic spindle checkpoint dysfunction is a common characteristic of human urothelial carcinoma, and can be exploited with pharmacologic Aurora A inhibition. Future studies that explore the mechanisms of spindle checkpoint failure in bladder cancer and evaluate the therapeutic role of Aurora kinases for bladder cancer patients would be of value.
Project description:To identify DNA accessibility targets regulated by the SWI/SNF subunit SMARCB1 in bladder cancer, we compared the ATAC-seq signals in T24 cells engineered for SMARCB1 knockout, non-targeting control, or SMARCB1 re-expression following knockout. Analysis of altered DNA accessibility profiles revealed new roles for SMARCB1 in the regulation of gene expression in bladder cancer, and suggested new therapeutic opportunities.
Project description:Humoral immunity requires B cells to respond to multiple stimuli, including antigen, membrane and soluble ligands and microbial products. Ets-family transcription factors regulate many aspects of hematopoiesis, although their roles in humoral immunity have proven difficult to decipher, potentially due to redundancy between the family members. Here we show that mice lacking both PU.1 and SpiB in mature B cells are unable to respond protein antigen, preventing germinal center formation and high-affinity antibody production. Mutant B cells also showed impaired survival following engagement of the CD40 and TLR pathways, but paradoxically enhanced plasma cell differentiation. PU.1 and SpiB control the expression of many components of the BCR signaling pathway and the receptors for CD40L, BAFF and toll ligands. Thus PU.1 and SpiB function enables B cells to appropriately respond to environmental cues.
Project description:Atherosclerosis, the underlying vascular cause of cardiovascular disease, has a strong inflammatory component. The co-stimulatory CD40-CD40 ligand (CD40L) signaling axis is a pivotal regulator of immune responses in atherosclerosis. However, therapeutic long-term inhibition of CD40L will severely compromise the immune system making it a non-viable treatment option. To circumvent this issue, cell-specific inhibition may present a better approach to target the CD40-CD40L axis. Therefore, we generated T cell and platelet-specific knockout mice for CD40L and apolipoprotein E, which were aged for 28 weeks to study their effects on immune status and atherosclerosis. Here, we show that T cell specific deficiency in CD40L signaling reduced plaque progression through hampered Th1 polarization as well as reduced antigen-dependent proliferation and oxLDL IgM production. DC-specific CD40 deficient mice displayed a similar phenotype. Platelet-specific CD40L deficiency, however, failed to decrease atherosclerosis, but ameliorated atherothrombosis. Together, our results illuminate the divergent cell-specific mechanisms of CD40-CD40L signaling in atherosclerosis, which may lead to advances in targeted therapies.
Project description:We knocked down SOX4 in T24 cell and created 3 cell lines: T24-scrambled, T24-SOX4-knockdown and T24-SOX4-rescue and compared gene expression changes SOX4 is a developmental transcription factor that is overexpressed in as many as 23% of bladder cancer patients, but the role of SOX4 in bladder cancer tumorigenesis is not well understood. Given SOX4’s many roles in embryonic development and context-dependent regulation of gene expression, we sought to understand SOX4’s contribution to bladder cancer and to elucidate SOX4 regulated genes that might contribute to tumorigenesis. We employed a CRISPR interference (CRISPRi) method to transcriptionally repress SOX4 expression in T24 bladder cancer cell lines, rescued these cell lines with lentivirally expressed SOX4, and performed whole genome expression profiling. SOX4 knockdown cells exhibited decreased invasive capabilities but no changes in migration or proliferation, while rescue with SOX4 lentiviral vector restored the invasive phenotype. Gene expression profiling revealed 173 high confidence SOX4 regulated genes
Project description:We established stable miR-146a-5p overexpression T24 cells, then performed transcriptome profiling of miR-146a-5p overexpressing cells compared to control T24 cells to detect the molecular mechanisms of the miR-146a-5p’s effect on bladder cancer cells.