Project description:The alkaliphilic halotolerant bacterium Bacillus sp. N16-5 often faces salt stress in its natural habitats. One-color microarrays was used to investigate transcriptome expression profiles of Bacillus sp. N16-5 adaptation reactions to prolonged grown at different salinities (0%, 2%, 8% and 15% NaCl) and the initial reaction to suddenly alter salinity from 0% to 8% NaCl.
Project description:To evaluate the differential potential affected by SMARCE1 -MD/MD(R42A) , we performed RNA-sequencing (RNA-seq) of Smarce1-MD and control Smarce1-MD (R42A) embrynoic body.
Project description:The alkaliphilic halotolerant bacterium Bacillus sp. N16-5 often faces salt stress in its natural habitats. One-color microarrays was used to investigate transcriptome expression profiles of Bacillus sp. N16-5 adaptation reactions to prolonged grown at different salinities (0%, 2%, 8% and 15% NaCl) and the initial reaction to suddenly alter salinity from 0% to 8% NaCl. Salt induced gene expression was measured when culture was grown on different salinities (0%, 2%, 8% and 15% NaCl) to mid-logarithmic phase. And salt induced gene expression was also measured at 0 min, 10 min, 30 min, 60min, 120min after a sudden change salinity from 0% to 8% NaCl.
Project description:Alkaline hemicellulytic bacteria Bacillus sp. N16-5 has abroad substrate spectrum and exhibits great growth ability on complex carbohydrates. In order to get insight into its carbohydrate utilization mechanism, global transcriptional profiles were separately determined for growth on glucose, fructose, mannose, galactose, arabinose, xylose, galactomannan, xylan, pectin and carboxymethyl cellulose by using one-color microarrays.
Project description:To evaluate the effects of mitotic degradation of SMARCE1 upon gene expression, we performed RNA-sequencing (RNA-seq) of cultures of four independent subclones each of Smarce1-MD and control Smarce1-MD (R42A) mESCs. We found that transcription of the core pluripotency regulatory network was not disrupted. In contrast, GO analysis showed that neural differentiation-associated terms were enriched among genes upregulated in Smarce1-MD mESCs. To better understand the difference in neural fates in the neural induction experiments, we performed differential gene expression analysis and gene set enrichment analysis (GSEA) studies. Mitotic degradation of SMARCE1 resulted in higher expression of GABA receptors and hyper-activation of synaptic signaling on neural induction, indicating the aberrant neural cell fate commitment compared to SMARCE1-MD (R42A) cultures. And then we add back BMP4 to partically rescue the phenotype and very small amount of BMP4 will rescue the phenotype.
Project description:Alkaline hemicellulytic bacteria Bacillus sp. N16-5 has abroad substrate spectrum and exhibits great growth ability on complex carbohydrates. In order to get insight into its carbohydrate utilization mechanism, global transcriptional profiles were separately determined for growth on glucose, fructose, mannose, galactose, arabinose, xylose, galactomannan, xylan, pectin and carboxymethyl cellulose by using one-color microarrays. Substrate induced gene expression was measured when culture was grown on glucose, fructose, mannose, galactose, arabinose, xylose, galactomannan, xylan and CMC to mid-logarithmic phase.