Project description:Triple negative breast cancer (TNBC) that fails to respond to neoadjuvant chemotherapy (NACT) can be lethal. Developing effective strategies to eradicate chemoresistant disease requires experimental models that recapitulate the heterogeneity characteristic of TNBC. To that end, we established a biobank of 92 orthotopic patient-derived xenograft (PDX) models of TNBC from the tumors of 75 patients enrolled in the ARTEMIS clinical trial (NCT02276443) at MD Anderson Cancer Center, including 12 longitudinal sets generated from serial patient biopsies collected throughout NACT and from metastatic disease. Models were established from both chemosensitive and chemoresistant tumors and nearly 30% of PDX models were capable of lung metastasis. Comprehensive molecular profiling demonstrated conservation of genomes and transcriptomes between patient and corresponding PDX tumors, with representation of all major transcriptional subtypes. Transcriptional changes observed in the longitudinal PDX models highlight dysregulation in pathways associated with DNA integrity, extracellular matrix interactions, the ubiquitin-proteasome system, epigenetics, and inflammatory signaling. These alterations reveal a complex network of adaptations associated with chemoresistance. This PDX biobank provides a valuable resource for tackling the most pressing issues facing the clinical management of TNBC, namely chemoresistance and metastasis.
Project description:Genome-wide DNA methylation analysis on PCOS using Illumina HumanMethylation 450K BeadChips in 30 PCOS patients and 30 healthy controls
Project description:We used the Illumina Infinium HumanMethylation EPIC beadchip array to profile 31 pediatric tumors with the histological diagnosis of anaplastic pilocytic astrocyoma (PA). PA with anaplasia has been defined in the 2016 WHO classification as a tumor with PA morphology and >4 mitoses per 10 HPF, with or without necrosis with a potential worse outcome. DNA Methylation based studies performed mainly in adults have put forward this subtype as a distinct entity. After performing the same techniques on pediatric samples, our findings argue that the diagnostic histomolecular criteria established for anaplasia in adult PA are not of diagnostic or prognostic value in a pediatric setting.
Project description:Osteosarcoma (OS) and Ewing’s sarcoma (EW) are the two most common pediatric solid tumors, after brain tumors. Multimodal treatments have significantly improved prognosis in localized disease but outcome is still poor in metastatic patients, for whom therapeutic options are often inadequate. Preclinical drug testing to identify promising treatment options that match the molecular make-up of these tumors is hampered by the lack of appropriate and molecularly well-characterized patient-derived models. To address this need, a panel of patient-derived xenografts (PDX) was established by subcutaneous implantation of fresh, surgically resected OS and EW tumors in NSG mice. Tumors were re-transplanted to next mice generations and fragments were collected for histopathological and molecular characterization. A model was considered established after observing stable histological and molecular features for at least three passages. To evaluate the similarity of the model with primary tumor, we performed a global gene expression profiling and tissue microarrays (TMA), to assess tumor specific biomarkers on tissues from OS/EW tumors and their PDXs (1st and 3rd passage). Moreover, we verified the feasibility of these models for preclinical drug testing. We implanted 61 OS and 29 EW samples: 14/38 (37%) primary OS and 9/23 (39%) OS lung metastases successfully engrafted; while among EW, 5/26 (19%) primary samples and 1/3 (33%) metastases were established. Comparison between patient samples and PDXs, highlighted that histology and genetic characteristics of PDXs were stable and maintained over passages. In particular, correlative analysis between OS and EW samples and their PDXs was extremely high (Pearson’s r range r=0.94-0.96), while patient-derived primary cultures displayed reduced correlation with human samples (r=0.90-0.93), indicating that in vitro adaptation superimpose molecular alterations that create genetic diversion from original tumors. No significant differentially expressed gene profile was observed from the comparison between EW samples and PDXs (fold change > 2, adjusted p <0.05 at paired t-test). In OS, the comparison between OS patient-derived tumors and PDX indicated differences in 397 genes, mostly belonging to immune system functional category. This is in line with the idea that human immune cells are gradually replaced by murine counterparts upon engraftment in the mouse. As proof-of concept, two EW PDX and one OS PDX have been treated with conventional and innovated drugs to test their value in terms of drug-sensitivity prediction. Overall, our study indicated that PDX models maintained the histological and genetic markers of the tumor samples and represent reliable models to test sensitivity to novel drug associations.
Project description:Sixteen pre-treatment samples of pathologically confirmed solitary fibrous tumors (SFT) were available for RNA profiling. They were collected from 16 patients who underwent initial surgery and/or diagnostic biopsy. Samples were macrodissected by pathologists, and frozen within 30 min of removal in liquid nitrogen in our biobank (Biobank authorization number 2008/70, APHM). All profiled specimens contained more than 70% tumor cells. Each patient gave written informed consent for molecular analysis, and the study was approved by our institutional ethics committee. Total RNA was extracted from frozen samples by using the All-In-One Norgen Biotek kit (Thorold, Canada) and integrity was controlled by Agilent analysis (Bioanalyzer, Palo Alto, CA). Gene expression profiling was done with Affymetrix U133 Plus 2.0 human oligonucleotide microarrays with labeling kit and protocol from manufacturer.
Project description:Pediatric liver tumors with high-risk features pose therapeutic challenges, necessitating the development of more targeted and effective treatment strategies. Computational modeling of virtual patients and in silico drug response simulations, based on properly trained mechanistic models, is a powerful strategy to predict new treatment options. We aimed to leverage patient-specific mechanistic cell models to identify therapeutic alternatives for pediatric patients with high-risk liver tumors. We generated digital twins of high-risk pediatric liver tumor patients by integrating clinical, genetic, and transcriptomic data and performed computational drug response simulations using mechanistic models. We validated the therapeutic potential of ceritinib in patient-derived xenograft models both in vitro and in vivo and used fluorescence microscopy-based imaging for functional analyses. Mechanistic models trained with digital twins of high-risk pediatric liver tumor patients identified ceritinib as the most effective treatment option through iterated in silico drug response simulations. Validation on a comprehensive drug-testing platform demonstrated that ceritinib, unlike other ALK receptor tyrosine kinase inhibitors with lower prediction scores, inhibited tumor growth by targeting non-canonical kinases. Mechanistically, ceritinib suppressed expression of nucleoporins, essential components of the nuclear pore complex overexpressed in pediatric liver tumors, consequently leading to the disruption of nuclear membrane integrity, perinuclear accumulation of mitochondria, production of reactive oxygen species, and induction of apoptosis. In patient-derived xenograft mouse models, ceritinib reduced tumor burden and extended survival by promoting cell death. This study demonstrates the successful application of mechanistic models on virtual patients to position ceritinib as a promising therapeutic agent for high-risk pediatric liver tumors, highlighting its impact on key kinases implicated in tumor aggressiveness and its ability to compromise nuclear integrity.
Project description:Diffuse low and high grade glioma are primary brain tumors arising from gllial cells. They are subdivided into three groups: IDH1-mutant oligodendrogliomas, IDH1-mutant astrocytomas and IDH1-Wild Type glioblastomas. Cellular tools to study these tumors remains poors, specially for low grades gliomas. We constituted a biobank of 12 patient-derived cell lines, from IDH1-mutant and wild type gliomas, then charactrized them to test their relevance as in vitro models.
Project description:Genome-wide DNA methylation analysis on PCOS using Illumina HumanMethylation 450K BeadChips in 30 PCOS patients and 30 healthy controls Case-control design