Project description:Arbuscular mycorrhizal symbiosis is a predominant relationship between plant and arbuscular mycorrhizal fungi. To idendify arbuscular mycorrhiza responsive miRNAs, small RNA libraries were constructed in tomato roots colonized with Rhizophagus irregularis and without Rhizophagus irregularis. We identify miRNAs in tomato roots and provide a new profile of tomato miRNAs. And we found that some miRNAs were responsive to arbuscular mycorrhiza by comparing miRNAs in treatment with that in control. Examination of arbuscular mycorrhiza responsive miRNAs in tomato through high-throughput small RNA sequencing of roots with Rhizophagus irregularis and that without Rhizophagus irregularis
Project description:Arbuscular mycorrhizal symbiosis is a predominant relationship between plant and arbuscular mycorrhizal fungi. To idendify arbuscular mycorrhiza responsive miRNAs, small RNA libraries were constructed in tomato roots colonized with Rhizophagus irregularis and without Rhizophagus irregularis. We identify miRNAs in tomato roots and provide a new profile of tomato miRNAs. And we found that some miRNAs were responsive to arbuscular mycorrhiza by comparing miRNAs in treatment with that in control.
Project description:ngs2021_19_rhizophagus-responses of maize to the arbuscular fungus rhizophagus irregularis mitigate n deficiency stress-What is the impact of Rhizophagus irregularis on maize transcriptome under different N nutrition conditions, what is the impact of N on R. irregularis transcriptome in maize roots.-After 4 days of germination, maize seeds were sown in pots filled with sterile mix 1:1 clay beads:unfertilized peat. Inoculation performed in 3 times with Rhizohphagus irregularis spores purchased at Agronutrition. First inoculation perfomed with 500 spores/plant at sowing. Two other incoulations performed the following week and 2 weeks later with 100 spore per plant each.
Project description:To date, little is known about molecular mechanisms by which woody plants engage symbiosis with arbuscular mycorrhizal (AM) fungi. Here we investigated transcriptome changes in the roots of Poncirus trifoliata (the most common citrus rootstock) that are induced during colonization of an AM fungus Glomus versiforme (Gv). A total of 282 Poncirus genes were differentially expressed in response to Gv colonization, of which 138 could identify homologous genes from the model legume Medicago truncatula that also exhibit similar AM-induced transcriptional changes, while the remaining 144 do not. A high proportion of the AM-responsive Poncirus genes are predicted to be involved in transcription regulation, transport process, cellular organization and protein degradation, implicating these processes in the establishment of AM symbiosis. Promoter-GUS analysis of six AM-induced Poncirus genes [encoding an exocyst subunit (PtrEXO70I), two transcription factors (PtNAC1 and PtPALM1), one chitinase (PtrChit2), one plastid movement associated protein (PtrPMI2) and one lipase (PtrLipase3)] showed that all of them exhibit specific expression in arbuscule-containing root cortical cells, suggesting their potential involvement in establishing AM symbiosis. Notably, down-regulation of the ortholog of PtrExo70I in Medicago by RNAi significantly impaired arbuscule development, indicating that Exo70I is an important host component required for arbuscule development in root cortical cells. This study not only helps identify conserved host genes engaged in AM symbiosis but should also guide future mechanistic studies of potentially Poncirus-specific events during its symbiosis with AM fungi.
Project description:affy_med_2011_09: In natural ecosystems most vascular plants develop symbiosis with arbuscular mycorrhizal (AM) fungi which help them acquire nutrients such as phosphorus (P) and nitrogen (N). P has long been known to control AM symbiosis which takes place only when P is limiting. For N, however, its role in controlling mycorrhization is less clear. We have chosen the model plant Medicago truncatula to analyze the impact of P limitation and both P and N limitation on Medicago root transcriptome in response to the AM fungus Rhizophagus irregularis (formerly Glomus intraradices (BEG141)). These analyses may help us uncover signaling events involved in the interaction between these symbionts as well as genes encoding transporters potentially important for nutrient exchanges in these conditions. --We will compare the root transcriptome of Medicago truncatula plants inoculated with Rhizophagus irregularis to that of non-inoculated plants grown under P limitation (or both P and N limitation) after 4 weeks of culture 12 arrays - Medicago; wt vs mutant comparison
Project description:Genome-wide screening and characterization of long non-coding RNAs involved in flowering development of citrus (Poncirus trifoliata L. Raf.) by RNA sequencing
Project description:affy_med_2011_09: In natural ecosystems most vascular plants develop symbiosis with arbuscular mycorrhizal (AM) fungi which help them acquire nutrients such as phosphorus (P) and nitrogen (N). P has long been known to control AM symbiosis which takes place only when P is limiting. For N, however, its role in controlling mycorrhization is less clear. We have chosen the model plant Medicago truncatula to analyze the impact of P limitation and both P and N limitation on Medicago root transcriptome in response to the AM fungus Rhizophagus irregularis (formerly Glomus intraradices (BEG141)). These analyses may help us uncover signaling events involved in the interaction between these symbionts as well as genes encoding transporters potentially important for nutrient exchanges in these conditions. --We will compare the root transcriptome of Medicago truncatula plants inoculated with Rhizophagus irregularis to that of non-inoculated plants grown under P limitation (or both P and N limitation) after 4 weeks of culture
Project description:The autoregulation of mycorrhization (AOM) describes a plant regulatory mechanism that limits the number of infection events by arbuscular mycorrhizal fungi. The key signal mediator is a receptor kinase (GmNARK) that acts in the shoots. Early signals of the mycorrhizal symbiosis induce a root-derived signal that activates GmNARK in the shoot finally leading to a systemic repression of subsequent infections in the root. So far, less is known about the signals down-stream of GmNARK. To find genes regulated by GmNARK in a mycorrhiza-dependent as well as in a mycorrhiza-independent manner, we used the Affymetrix GeneChip for soybean. In general, mycorrhizal root systems consist of both colonized and non-colonized, but autoregulated roots. To physically separate those two root types for transcript analysis of specifically regulated genes, we used the split-root system. Transcript profiling during AOM was done with material of Bragg wild-type and of the nark mutant nts1007, either non-inoculated or partially inoculated with the mycorrhizal fungus Rhizophagus irregularis (formerly Glomus intraradices). Wild-type and nark mutants were inoculated with R. irregularis on one half of the root-systems (root-parts "A") only. The remaining half of the root-systems stayed non-infected (root-parts "B"). Corresponding controls stayed completely non-infected. Gene expression was analyzed in inoculated root-parts, non-inoculated root-parts and shoots of three individual plants per treatment. ****[PLEXdb(http://www.plexdb.org) has submitted this series at GEO on behalf of the original contributor, Sara Schaarschmidt. The equivalent experiment is GM53 at PLEXdb.]