Project description:Previous analysis of gene transcript levels of Geobacter species in groundwater during in situ bioremediation of a uranium-contaminated aquifer detected expression of genes encoding superoxide dismutase (sodA) and cytochrome d ubiquinol oxidase (cydA), proteins known to be involved in the response to oxidative stress in other microorganisms. In order to further elucidate gene expression patterns that could be attributed to oxygen exposure, G. uraniumreducens was grown with acetate as the electron donor and fumarate as the electron acceptor in the presence of oxygen and compared to non-oxygen treated cultures.
Project description:HiSpOD is a new efficient functional microarrays probe design algorithm especially dedicated for the microbial ecology and environmental studies. It was used to design 3392 probes targeting 21 genes involved in chlorinated solvent biodegradation pathways and synthesized on a nimblegen microarray. In order to test the probe specificity, the microarray was firstly hybridized to 6 M-BM-5g of labelled aRNA from sheep rumen content (background aRNA). Secondly, hybridization of 1011 copies of labelled aRNA derived from in vitro transcription of three synthetic genes (mmoC, vcrA and tceA) and mixed with 6 M-BM-5g of the same complex background material were performed to test their sensibility. Finally, the expression analysis of a contaminated groundwater sample was performed. A 3 chip study was realized. The first one is a negative control performed with a complex background material (labelled antisense mRNA from sheep rumen content). The second one is a positive control realized with labelled antisense RNA derived from in vitro transcription of three synthetic genes mixed the same complex background material. The third consists in the hybridization of antisense mRNA retrieved from a contaminated groundwater. Each probe (3392) was synthetized in triplicate, and a total of 8,863 random probes was used to determine the background noise.
Project description:Geobacteraceae transfer electrons from a donor such as acetate to an electron acceptor such as Fe(III) or U(VI). Geobacter uraniireducens is found in uranium-contaminated sites and plays an important role in in situ bioremediation. In this experiment, gene expression was compared between G. uraniireducens cultures grown in sediments from a uranium contaminated site amended with acetate and cultures grown in acetate/fumarate medium. Keywords: two-condition comparison
Project description:Metagenome-assembled genomes (MAGs) have revealed the existence of novel bacterial and archaeal groups and provided insight into their genetic potential. However, metagenomics and even metatranscriptomics cannot resolve how the genetic potential translates into metabolic functions and physiological activity. Here, we present a novel approach for the quantitative and organism-specific assessment of the carbon flux through microbial communities with stable isotope probing-metaproteomics and integration of temporal dynamics in 13C incorporation by Stable Isotope Cluster Analysis (SIsCA). We used groundwater microcosms labeled with 13CO2 and D2O as model systems and stimulated them with reduced sulfur compounds to determine the ecosystem role of chemolithoautotrophic primary production. Raman microspectroscopy detected rapid deuterium incorporation in microbial cells from 12 days onwards, indicating activity of the groundwater organisms. SIsCA revealed that groundwater microorganisms fell into five distinct carbon assimilation strategies. Only one of these strategies, comprising less than 3.5% of the community, consisted of obligate autotrophs (Thiobacillus), with a 13C incorporation of approximately 95%. Instead, mixotrophic growth was the most successful strategy, and was represented by 12 of the 15 MAGs expressing pathways for autotrophic CO2 fixation, including Hydrogenophaga, Polaromonas and Dechloromonas, with varying 13C incorporation between 5% and 90%. Within 21 days, 43% of carbon in the community was replaced by 13C, increasing to 80% after 70 days. Of the 31 most abundant MAGs, 16 expressed pathways for sulfur oxidation, including strict heterotrophs. We concluded that chemolithoautotrophy drives the recycling of organic carbon and serves as a fill-up function in the groundwater. Mixotrophs preferred the uptake of organic carbon over the fixation of CO2, and heterotrophs oxidize inorganic compounds to preserve organic carbon. Our study showcases how next-generation physiology approach like SIsCA can move beyond metagenomics studies by providing information about expression of metabolic pathways and elucidating the role of MAGs in ecosystem functioning.
Project description:Groundwater samples were collected from five wells in Alberta, Canada. The sampling location and time are indicated in the table below. 13 to 29 genomes were assembled from each metagenome. Proteomic analyses were performed to investigate which genomes and genes were expressed in each well. Sample ID Location Latitude (NAD 83) Longitude (NAD 83) Sampling date 19GWC19026 218 Cluny 50.85 -112.84 30/07/2019 19GWC19028 114 Ross Creek 49.99 -110.46 31/07/2019 19GWC19045 265 Metiskow 52.42 -110.61 18/09/2019 19GWE00050 991 Cynthia 56.22 -117.81 04/09/2019 19GWE00515 33 Fort McMurray 56.98 -111.85 17/09/2019
Project description:HiSpOD is a new efficient functional microarrays probe design algorithm especially dedicated for the microbial ecology and environmental studies. It was used to design 3392 probes targeting 21 genes involved in chlorinated solvent biodegradation pathways and synthesized on a nimblegen microarray. In order to test the probe specificity, the microarray was firstly hybridized to 6 µg of labelled aRNA from sheep rumen content (background aRNA). Secondly, hybridization of 1011 copies of labelled aRNA derived from in vitro transcription of three synthetic genes (mmoC, vcrA and tceA) and mixed with 6 µg of the same complex background material were performed to test their sensibility. Finally, the expression analysis of a contaminated groundwater sample was performed.