Project description:The inner ear constitutes different cell types next to one another: the sensory patches whose hair cells synapse with neurons, the thin channels of three semicircular canals whose perpendicular organization enables detection of directional head rotation, and the endolymphatic duct and sac whose conditional epithelial barrier relieves excess pressure and promotes fluid pressure homeostasis. How the ear’s component cell states are established during development has remained unknown. We use single-cell RNA sequencing to distinguish cell states within the developing ear with wild-type zebrafish embryos and lmx1bb mutants that exhibit defects in canal and sac morphogenesis. We identify the earliest marker for the semicircular canal-genesis zone (ccn1l1), unexpected genes in the endolymphatic sac that suggest a role for tissue contraction in its function (smtnb), parallel gene sets for sensory patches in the neuromast and ear, and a conserved role for cell-cycle pausing (cdkn1bb expression in the canals and sac as previously observed in the developing mouse ear). This atlas provides the most comprehensive transcriptional profiling of the developing inner ear, identifying new molecular leads to understand ear morphogenesis.
Project description:Ear and nasal swabs were collected longitudinally from children in Yalata. Ear and nose microbiota was assessed and related to ear disease and treatment
Project description:D-galactose orally intake ameliorate DNCB-induced atopic dermatitis by modulating microbiota composition and quorum sensing. The increased abundance of bacteroidetes and decreased abundance of firmicutes was confirmed. By D-galactose treatment, Bacteroides population was increased and prevotella, ruminococcus was decreased which is related to atopic dermatitis.