Project description:Host-microbiome-dietary interactions play crucial roles in regulating human health, yet direct functional assessment of their interplays, cross-regulations and downstream disease impacts remains challenging. We adopted metagenome-informed metaproteomics (MIM), in both mice and humans, to simultaneously explore host, dietary, and species-level microbiome interactions across diverse scenarios, including commensal and pathogen colonization, nutritional modifications, and antibiotic-induced perturbations. Implementation of MIM in murine auto-inflammation and in human IBD characterized a ‘compositional dysbiosis’ and a concomitant, species-specific ‘functional dysbiosis’ driven by suppressed commensal responses to inflammatory host signals. Microbiome transfers unraveled early-onset kinetics of these host-commensal cross-responsive patterns, while predictive analyses identified candidate fecal host-microbiome IBD biomarker protein pairs outperforming S100A8/S100A9 (calprotectin). Importantly, a simultaneous fecal nutrient assessment enabled determination of IBD-related consumption patterns, dietary treatment compliance and small-intestinal digestive aberrations. Collectively, a parallelized dietary-bacterial-host MIM assessment functionally uncovers trans-kingdom interactomes shaping gastrointestinal ecology, while offering personalized diagnostic and therapeutic insights into microbiome-associated disease.
Project description:We deep sequenced and analyzed miRNAs using deep RNA sequencing (RNA-seq) in cage rearing and traditional breeding duck's duodenum sample of Nonghu NO.2 duck. 21 differentially expressed miRNA were identified in the duodenum. 6 miRNAs were upregulated and 15 were downregulated in the cage rearing duck's duodenum of the Nonghu NO.2 duck compared to their expression in the control group. These findings provided insights into the expression profiles of miRNAs in duck duodenum, and deepened our understanding of miRNAs in oxidative injury of duck.
Project description:We aim to study the unusual TMA metabolism mechanism of ducks, and further explore the hidden reasons that led to the weakening TMA metabolism ability.To achieve this, transcriptome, proteome, and metagenome analyses were integrated based on the constructed duck populations with high TMA metabolism ability and low TMA metabolism ability.
Project description:The main goal of the project is the study the associations between the gut metagenome and human health. The dataset contains data for n=7211 FINRISK 2002 participants who underwent fecal sampling. Demultiplexed shallow shotgun metagenomic sequences were quality filtered and adapter trimmed using Atropos (Didion et al., 2017), and human filtered using Bowtie2 (Langmead and Salzberg, 2012).