Project description:Illumina HiSeq technology was used to generate mRNA profiles from Terfezia claveryi in three different conditions: free living mycellium, well-watered mycorrhizal plant and drought-stressed mycorrhizal plant. Paired-end reads of 75 bp were generated and aligned to Terfezia claveryi reference transcripts using CLC Genomics Workbench 11.
Project description:Here, we report the genome sequence of the mycorrhizal helper bacterium (MHB) Pseudomonas mandelii strain 29. This is the genome of an MHB associated with ascocarps of the desert truffle Terfezia claveryi. The genome is complete and consists of 6,302,122 bp and 5,812 predicted protein-coding sequences.
Project description:Pseudomonas mandelii strain:29 | isolate:peridium of ascocarps of the ectendomycorrhizal fungus Terfezia claveryi Chatin Genome sequencing and assembly
Project description:Desert truffles have been used as traditional treatments for numerous inflammatory disorders. However, the molecular mechanisms underlying their anti-inflammatory effects in RAW 264.7 macrophages have yet to be fully elucidated. The present study investigated the anti-inflammatory activities of two main desert truffles, Terfezia boudieri and T. claveryi, and the underlying mechanisms associated with their anti-inflammatory activities in RAW 264.7 macrophages stimulated with lipopolysaccharide/interferon-gamma (LPS/IFN-γ). Our results demonstrated that treatment with T. boudieri and T. claveryi extracts effectively suppressed the inflammatory response in LPS/IFN-γ-stimulated RAW 264.7 macrophages. Specifically, T. boudieri extract was found to reduce the production of nitric oxide and inhibit the expression of various pro-inflammatory markers, including inducible nitric oxide synthase, cyclooxygenase-2 (COX-2), tumor necrosis factor-α, and interleukin-6 (IL-6) at both the mRNA and protein levels. Similarly, T. claveryi extract exhibited comparable inhibitory effects, except for the expression of IL-6 and COX-2 at the protein level, where no significant effect was observed. Moreover, both studied extracts significantly downregulated the microRNA expression levels of miR-21, miR-146a, and miR-155, suggesting that T. boudieri and T. claveryi suppress the inflammatory response in LPS/IFN-γ-stimulated RAW 264.7 cells through an epigenetic mechanism. Furthermore, our study reveals a new mechanism for the anti-inflammatory properties of desert truffle extracts. We show for the first time that Terfezia extracts do not rely on the nuclear factor erythroid 2-related factor 2 pathway, previously linked to anti-inflammatory responses. This expands our understanding of natural product anti-inflammatory mechanisms and could have important implications for developing new therapies. To account for differences in truffle effects, extracts prepared were subjected to secondary metabolites profiling using UPLC-MS. UPLC-MS led to the annotation of 87 secondary metabolites belonging to various classes, including amino acids, carbohydrates, alkaloids, amides, fatty acids, sterols, and phenolic compounds. Therefore, these results indicate that T. boudieri and T. claveryi exhibit anti-inflammatory activities through suppressing multiple inflammatory mediators and cytokines and may be potential anti-inflammatory agents.
Project description:Desert truffle crop is a pioneer in southeastern Spain, a region where native edible hypogeous fungi are adapted to the semiarid areas with low annual rainfall. Terfezia claveryi Chatin was the first species of desert truffle to be cultivated, and has been increasing in recent years as an alternative rainfed crop in the Iberian Peninsula. However, its behaviour in the field has yet not been investigated. For this purpose, specific primers were designed for the soil DNA quantification of both T. claveryi and Terfezia crassiverrucosa and a real-time qPCR protocol was developed, using the ITS rDNA region as a target. Moreover, a young desert truffle orchard was sampled for environmental validation. The results showed the highest efficiency for the TerclaF3/TerclaR1 primers pair, 89%, and the minimal fungal biomass that could be reliable detected was set at 4.23 µg mycelium/g soil. The spatial distribution of fungal biomass was heterogeneous, and there was not a direct relationship between the quantity of winter soil mycelium and the location/productivity of desert truffles. This protocol could be applied to tracking these species in soil and understand their mycelial dynamics in plantations and wild areas.