Project description:We describe a series of computational pipelines for the in silico analysis of small RNAs (sRNA) produced in response to viral infections in plants. Our workflow is primarily focused on the analysis of sRNA populations derived from known or previously undescribed viruses infecting host plants. Furthermore, we provide an additional pipeline to examine host-specific endogenous sRNAs activated or specifically expressed during viral infections in plants. We present some key points for a successful and cost-efficient processing of next generation sequencing sRNA libraries, from purification of high quality RNA to guidance for library preparation and sequencing strategies. We report a series of free available tools and programs as well as in-house Perl scripts to perform in-house sRNA-seq data mining. A multi-step analysis pipeline is extensively detailed so previous bioinformatic background is not required, but experience with basic Unix commands is desirable.
Project description:We investigated changes in gene expression in rice plants exposed to RDV to gain some insight into the fundamental physiological and biochemical changes that are induced by viral infection, in the hope of finding clues that might help to control the viral disease. An analysis, using microarrays, of gene expression in rice plants infected with Rice dwarf virus revealed significant decreases in levels of expression of genes that are involved in the formation of cell walls, reflecting the stunted growth of diseased plants. The expression of plastid-related genes was also suppressed, as anticipated from the white chlorotic appearance of infected leaves. By contrast, the expression of defense- and stress-related genes was enhanced after viral infection. Keywords: disease state analysis
Project description:au07-02_trv - arabidopsis transcriptome microarray from virus infected leafs. - mRNA expression profile in virus-infected Arabidopsis. - mRNA and microRNA expression profile in virus-infected leafs of Arabidopsis. Keywords: normal vs disease comparison
Project description:Rice tungro bacilliform virus (RTBV) is determinant of the rice tungro disease symptom. We compare the gene responses by RTBV infection between RTBV susceptive (TN1) and resistant cultivar (TW16). TN1 infected with RTBV shows the mild stunting and leaf yellowing, although TW16 shows only mild stunting at only early infection stage, and recovers the symptoms. Keywords: virus infection, disease response Comparison between RTBV and mock infected rice. Biological replicates: 3 control, 3 infected, independently grown and harvested. 1 samples derived from 5 plants grown under same conditons