Project description:Purpose: The goal of this study is to evaluate transcriptional regulation of the accumulation of phenols and anthocyanins in young leaves of subtropical forest tree species by using NGS-derived RNA-seq. Methods: Leaf mRNA profiles of subtropical tree Schima superba and Cryptocarya concinna grown under contasting light were generated by deep sequencing, in triplicate, using Illumina. The sequence reads that passed quality filters were analyzed at the transcript isoform level with TopHat followed by Cufflinks. FPKM produced by RSEM are provided. Results: Assemblies of the sequence data yielded 61,618 and 64,413 unigenes for Schima superba and Cryptocarya concinna,respectively. Overall,75.14% and 66.46% of the unigenes were annotated in the protein database Nonredundant protein (Nr), Nonredundant nucleotide (Nt), Swiss-Prot、Kyoto Encyclopedia of Genes and Genomes (KEGG), Cluster of Orthologous Groups of proteins (COG) and Gene Ontology (GO) for S. superba and C concinna,respectively.A total of 3896, 3488 and 266 genes were differentially expressed in full light-exposed young leaf (FLY), low light-exposed young leaf (LYL) and low light-exposed mature leaf (LML) relative to low light-exposed mature leaf (FML) of S. superba, respectively, and 2097, 2047 and 211 genes were differentially expressed in the corresponding leaves of C. concinna. Conclusions: Our study represents the first detailed analysis of transcriptomes in young and mature leaves of dorminant trees from a subtropical forest in China, with biologic replicates, generated by RNA-seq technology. Photosynthesis-related genes and phenol pathways-related genes were extensively down- and up-regulated in young versus mature leaves of the two species.
Project description:Plant roots harbor and interact with diverse fungal species. By changing these belowground fungal communities, focal plants can affect the performance of surrounding individuals and the outcome of coexistence. Although highly host related, the roles of these root-associated fungal communities per se in host plant spatial co-occurrence is largely unknown. Here, we evaluated the host dependency of root-associated communities for 39-plant species spatially mapped throughout a 50-ha subtropical forest plot with relevant environmental properties. In addition, we explored whether the differentiation in root fungal associations among plant species can reflect their observed co-occurrence patterns. We demonstrated a strong host-dependency by discriminating the differentiation of root-associated fungal communities regardless of background soil heterogeneity. Furthermore, Random Forest modeling indicated that these nonrandom root fungal associations significantly increased our ability to explain spatial co-occurrence patterns, and to a greater degree than the relative abundance, phylogenetic relatedness, and functional traits of the host plants. Our results further suggested that plants harbor more abundant shared, "generalist" pathogens are likely segregated, while hosting more abundant unique, "specialist" ectomycorrhizal fungi might be an important strategy for promoting spatial aggregation, particularly between early established trees and the heterospecific adults. Together, we provide a conceptual and testable approach to integrate this host-dependent root fungal "fingerprinting" into the plant diversity patterns. We highlight that this approach is complementary to the classic cultivation-based scheme and can deepen our understanding of the community-level effect from overall fungi and its contribution to the pairwise plant dynamics in local species-rich communities.
Project description:Simulated drought changes arbuscular mycorrhizal fungal biomass and root colonization rather than community in different growth seasons in a subtropical forest