Project description:Gene expression level of Clostridioides difficile (C. difficile) strain R20291 comparing control C. difficile carring pMTL84151 as vector plasmid with C. difficile conjugated with a pMTL84151-03890 gene. Goal was to determine the effects of 03890 gene conjugation on C. difficile strain R20291 gene expression.
Project description:Investigation of whole genome gene expression level changes in a Clostridium difficile fur (ferric uptake regulator) mutant, compared to the wild type strain 630 erm. The fur mutant analyzed in this study is further described in Ho and Ellermeier (2015) J. Bacteriology
Project description:We illustrate how metabolically distinct species of Clostridia can protect against or worsen Clostridioides difficile infection, modulating the pathogen's colonization, growth, and virulence to impact host survival. Gnotobiotic mice colonized with the amino acid fermenter Paraclostridium bifermentans survived infection while mice colonized with the butyrate-producer, Clostridium sardiniense, more rapidly succumbed. Systematic in vivo analyses revealed how each commensal altered the gut nutrient environment, modulating the pathogen's metabolism, regulatory networks, and toxin production. Oral administration of P. bifermentans rescued conventional mice from lethal C. difficile infection via mechanisms identified in specifically colonized mice. Our findings lay the foundation for mechanistically informed therapies to counter C. difficile disease using systems biologic approaches to define host-commensal-pathogen interactions in vivo.
Project description:Investigation of whole genome gene expression level changes in a Clostridium difficile fur (ferric uptake regulator) mutant, compared to the wild type strain 630 erm. The fur mutant analyzed in this study is further described in Ho and Ellermeier (2015) J. Bacteriology A microarray study using total RNA recovered from three separate wild type cultures of Clostridium difficile 630 erm strain and three separate cultures of a fur mutant strain (ltrA::ermR) were grown in Tryptone-Yeast Extract medium containing 0.25 mM ferric chloride . Each chip measures the expression level of 3,786 of the 3,787 open reading frames of the C. difficile 630 genome with 18 probes (60 oligomers each) for each gene.
Project description:The intestines house a diverse microbiota that must compete for nutrients to survive, but the specific limiting nutrients that control pathogen colonization are not clearly defined. Clostridioides difficile colonization typically requires prior disruption of the microbiota, suggesting that outcompeting commensals for resources is key in establishing C. difficile infection (CDI). The immune protein calprotectin (CP) is released into the gut lumen during CDI to chelate zinc (Zn) and other essential nutrient metals. Yet, the impact of Zn limitation on C. difficile colonization is unknown. To define C. difficile responses to Zn limitation, we performed RNA sequencing on C. difficile exposed to CP. In media with CP, C. difficile upregulated genes involved in metal homeostasis and amino acid metabolism.
Project description:The Gram-positive bacterium Clostridium difficile, a leading cause of antibiotic-associated pseudomembranous colitis, has received increasing attention due to a rising incidence of clinical C. difficile infections (CDI). Despite progress understanding bacterial factors that promote CDI-associated morbidity and mortality, many fundamental aspects of C. difficile biology remain to be explored. Compared to other Gram-positive pathogens, little is known about the bacterium’s transcriptome architecture and in particular mechanisms of post-transcriptional control. To close this knowledge gap, we have applied a suite of transcriptome-focused techniques, including transcription start site mapping (dRNA-seq), transcription termination mapping, and Hfq RIP-seq, resulting in a single-nucleotide resolution RNA map of C. difficile strain 630.