Project description:The taxonomy of coccoid cyanobacteria, such as Chroococcidiopsis, Pleurocapsa, Chroococcus, Gloeothece, Gloeocapsa, Gloeocapsopsis, and the related recent genera Sinocapsa and Aliterella, can easily be intermixed when solely compared on a morphological basis. There is still little support on the taxonomic position of some of the addressed genera, as genetic information is available only for a fraction of species that have been described solely on morphology. Modern polyphasic approaches that combine classic morphological investigations with DNA-based molecular analyses and the evaluation of ecological properties can disentangle these easily confusable unicellular genera. By using such an approach, we present here the formal description of two novel unicellular cyanobacterial species that inhabit the Coastal Range of the Atacama Desert, Gloeocapsopsis dulcis (first reported as Gloeocapsopsis AAB1) and Gloeocapsopsis diffluens. Both species could be clearly separated from previously reported species by 16S rRNA and 16S-23S ITS gene sequencing, the resulting secondary structures, p-distance analyses of the 16S-23S ITS, and morphology. For avoiding further confusions emendation of the genus Gloeocapsopsis as well as epitypification of the type species Gloeocapsopsis crepidinum based on the strain LEGE06123 were conducted.
Project description:Background: Ependymomas encompass multiple, clinically relevant tumor types based on localization and molecular profiles. Although tumors of the methylation class “spinal ependymoma” (SP-EPN) represent the most common intramedullary neoplasms in children and adults, their developmental origin is ill-defined, molecular data are scarce, and the potential heterogeneity within SP-EPN remains unexplored. The only known recurrent genetic events in SP-EPN are loss of chromosome 22q and NF2 mutations, but neither types and frequency of these alterations nor their clinical meaning have been described in a large, epigenetically defined series. Methods: We mapped SP-EPN transcriptomes (n=76) to developmental atlases of the developing and adult spinal cord to uncover potential developmental origins of these tumors. In addition, transcriptomic, epigenetic (n=234), genetic (n=140), and clinical analyses (n=115) were integrated for a detailed overview on this entity. Results: Integration of transcriptomic ependymoma data with single-cell atlases of the spinal cord identified mature adult ependymal cells to display highest similarities to SP-EPN. Unsupervised hierarchical clustering of tumor data together with integrated analysis of methylation profiles identified two molecular SP-EPN subtypes. Subtype 1 predominantly contained NF2 wild type sequences with regular NF2 expression but revealed more extensive copy number alterations. Subtype 2 harbored previously known germline or sporadic NF2 mutations and was NF2-deficient in most cases, more often showed multilocular disease, and demonstrated a significantly reduced progression-free survival. Conclusion: Based on integrated molecular profiling of a large tumor series we identify two distinct SP-EPN subtypes with important implications for genetic counseling, patient surveillance, and drug development priorities.
Project description:Background: Ependymomas encompass multiple, clinically relevant tumor types based on localization and molecular profiles. Although tumors of the methylation class “spinal ependymoma” (SP-EPN) represent the most common intramedullary neoplasms in children and adults, their developmental origin is ill-defined, molecular data are scarce, and the potential heterogeneity within SP-EPN remains unexplored. The only known recurrent genetic events in SP-EPN are loss of chromosome 22q and NF2 mutations, but neither types and frequency of these alterations nor their clinical meaning have been described in a large, epigenetically defined series. Methods: We mapped SP-EPN transcriptomes (n=76) to developmental atlases of the developing and adult spinal cord to uncover potential developmental origins of these tumors. In addition, transcriptomic, epigenetic (n=234), genetic (n=140), and clinical analyses (n=115) were integrated for a detailed overview on this entity. Results: Integration of transcriptomic ependymoma data with single-cell atlases of the spinal cord identified mature adult ependymal cells to display highest similarities to SP-EPN. Unsupervised hierarchical clustering of tumor data together with integrated analysis of methylation profiles identified two molecular SP-EPN subtypes. Subtype 1 predominantly contained NF2 wild type sequences with regular NF2 expression but revealed more extensive copy number alterations. Subtype 2 harbored previously known germline or sporadic NF2 mutations and was NF2-deficient in most cases, more often showed multilocular disease, and demonstrated a significantly reduced progression-free survival. Conclusion: Based on integrated molecular profiling of a large tumor series we identify two distinct SP-EPN subtypes with important implications for genetic counseling, patient surveillance, and drug development priorities.
Project description:Background: Ependymomas encompass multiple, clinically relevant tumor types based on localization and molecular profiles. Although tumors of the methylation class “spinal ependymoma” (SP-EPN) represent the most common intramedullary neoplasms in children and adults, their developmental origin is ill-defined, molecular data are scarce, and the potential heterogeneity within SP-EPN remains unexplored. The only known recurrent genetic events in SP-EPN are loss of chromosome 22q and NF2 mutations, but neither types and frequency of these alterations nor their clinical meaning have been described in a large, epigenetically defined series. Methods: We mapped SP-EPN transcriptomes (n=76) to developmental atlases of the developing and adult spinal cord to uncover potential developmental origins of these tumors. In addition, transcriptomic, epigenetic (n=234), genetic (n=140), and clinical analyses (n=115) were integrated for a detailed overview on this entity. Results: Integration of transcriptomic ependymoma data with single-cell atlases of the spinal cord identified mature adult ependymal cells to display highest similarities to SP-EPN. Unsupervised hierarchical clustering of tumor data together with integrated analysis of methylation profiles identified two molecular SP-EPN subtypes. Subtype 1 predominantly contained NF2 wild type sequences with regular NF2 expression but revealed more extensive copy number alterations. Subtype 2 harbored previously known germline or sporadic NF2 mutations and was NF2-deficient in most cases, more often showed multilocular disease, and demonstrated a significantly reduced progression-free survival. Conclusion: Based on integrated molecular profiling of a large tumor series we identify two distinct SP-EPN subtypes with important implications for genetic counseling, patient surveillance, and drug development priorities.
Project description:For tolerating extreme desiccation, cyanobacteria are known to produce both compatible solutes at intracellular level and a copious amount of exopolysaccharides as a protective coat. However, these molecules make cyanobacterial cells refractory to a broad spectrum of cell disruption methods, hindering genome sequencing, and molecular studies. In fact, few genomes are already available from cyanobacteria from extremely desiccated environments such as deserts. In this work, we report the 5.4 Mbp draft genome (with 100% of completeness in 105 contigs) of Gloeocapsopsis sp. UTEX B3054 (subsection I; Order Chroococcales), a cultivable sugar-rich and hardly breakable hypolithic cyanobacterium from the Atacama Desert. Our in silico analyses focused on genomic features related to sugar-biosynthesis and adaptation to dryness. Among other findings, screening of Gloeocapsopsis genome revealed a unique genetic potential related to the biosynthesis and regulation of compatible solutes and polysaccharides. For instance, our findings showed for the first time a novel genomic arrangement exclusive of Chroococcaceae cyanobacteria associated with the recycling of trehalose, a compatible solute involved in desiccation tolerance. Additionally, we performed a comparative genome survey and analyses to entirely predict the highly diverse pool of glycosyltransferases enzymes, key players in polysaccharide biosynthesis and the formation of a protective coat to dryness. We expect that this work will set the fundamental genomic framework for further research on microbial tolerance to desiccation and to a wide range of other extreme environmental conditions. The study of microorganisms like Gloeocapsopsis sp. UTEX B3054 will contribute to expand our limited understanding regarding water optimization and molecular mechanisms allowing extremophiles to thrive in xeric environments such as the Atacama Desert.