RRAD, IL4I1, CDKN1A, and SERPINE1 genes are potentially co-regulated by NF-κB and p53 transcription factors in cells exposed to high doses of ionizing radiation [ChIP-Seq]
Ontology highlight
ABSTRACT: RRAD, IL4I1, CDKN1A, and SERPINE1 genes are potentially co-regulated by NF-κB and p53 transcription factors in cells exposed to high doses of ionizing radiation [ChIP-Seq]
Project description:Cellular response to ionizing radiation involves activation of the p53-dependent pathways and activation of the atypical NF-?B pathway. Mechanisms of the crosstalk between these two transcriptional networks include (co)regulation of common gene targets. Novel genes potentially (co)regulated by p53 and NF-?B were found using high-throughput genomics screening in human osteosarcoma U2-OS cells irradiated with a high dose (4 and 10 Gy). Radiation-induced expression in cells with silenced TP53 or RELA (coding the p65 NF-?B subunit) genes was analyzed by RNA-Seq while radiation-induced binding of p53 and RelA (p65) in putative regulatory regions was analyzed by ChIP-Seq, then selected candidates were validated by qPCR. A subset of radiation-modulated genes whose expression was affected by silencing of both TP53 and RELA, and a subset of radiation-upregulated genes where radiation stimulated binding of both p53 and RelA were identified. Competition for the same transcriptional coactivators of p53 and NF-?B was the most probable mechanism of a frequent antagonistic effect of the TP53 and RELA silencing. However, this mode of regulation was noted for 3 genes where radiation-induced binding of both p53 and RelA was observed, namely IL4I1, SERPINE1, and CDKN1A. This suggested a possibility of a direct antagonistic (co)regulation by both factors: activation by NF-?B and inhibition by p53 of IL4I1, and activation by p53 and inhibition by NF-?B of CDKN1A and SERPINE1. On the other hand, radiation-induced binding of both p53 and RelA was observed in a putative regulatory region of RRAD gene whose expression was downregulated both by TP53 and RELA silencing, which suggested a possibility of direct (co)activation by both factors.
Project description:Cellular response to ionizing radiation involves activation of the p53-dependent pathways and activation of the atypical NF-κB pathway. Mechanisms of the crosstalk between these two transcriptional networks include (co)regulation of common gene targets. Novel genes potentially (co)regulated by p53 and NF-κB were found using high-throughput genomics screening in human osteosarcoma U2-OS cells irradiated with a high dose (4 and 10 Gy). Radiation-induced expression in cells with silenced TP53 or RELA (coding the p65 NF-κB subunit) genes was analyzed by RNA-Seq while radiation-induced binding of p53 and RelA (p65) in putative regulatory regions was analyzed by ChIP-Seq, then selected candidates were validated by qPCR. A subset of radiation-modulated genes whose expression was affected by silencing of both TP53 and RELA, and a subset of radiation-upregulated genes where radiation stimulated binding of both p53 and RelA were identified. Competition for the same transcriptional coactivators of p53 and NF-κB was the most probable mechanism of a frequent antagonistic effect of the TP53 and RELA silencing. However, this mode of regulation was noted for 3 genes where radiation-induced binding of both p53 and RelA was observed, namely IL4I1, SERPINE1, and CDKN1A. This suggested a possibility of a direct antagonistic (co)regulation by both factors: activation by NF-κB and inhibition by p53 of IL4I1, and activation by p53 and inhibition by NF-κB of CDKN1A and SERPINE1. On the other hand, radiation-induced binding of both p53 and RelA was observed in a putative regulatory region of RRAD gene whose expression was downregulated both by TP53 and RELA silencing, which suggested a possibility of direct (co)activation by both factors.
Project description:RRAD, IL4I1, CDKN1A, and SERPINE1 genes are potentially co-regulated by NF-κB and p53 transcription factors in cells exposed to high doses of ionizing radiation [RNA-Seq]
Project description:BackgroundThe cellular response to ionizing radiation involves activation of p53-dependent pathways and activation of the atypical NF-κB pathway. The crosstalk between these two transcriptional networks include (co)regulation of common gene targets. Here we looked for novel genes potentially (co)regulated by p53 and NF-κB using integrative genomics screening in human osteosarcoma U2-OS cells irradiated with a high dose (4 and 10 Gy). Radiation-induced expression in cells with silenced TP53 or RELA (coding the p65 NF-κB subunit) genes was analyzed by RNA-Seq while radiation-enhanced binding of p53 and RelA in putative regulatory regions was analyzed by ChIP-Seq, then selected candidates were validated by qPCR.ResultsWe identified a subset of radiation-modulated genes whose expression was affected by silencing of both TP53 and RELA, and a subset of radiation-upregulated genes where radiation stimulated binding of both p53 and RelA. For three genes, namely IL4I1, SERPINE1, and CDKN1A, an antagonistic effect of the TP53 and RELA silencing was consistent with radiation-enhanced binding of both p53 and RelA. This suggested the possibility of a direct antagonistic (co)regulation by both factors: activation by NF-κB and inhibition by p53 of IL4I1, and activation by p53 and inhibition by NF-κB of CDKN1A and SERPINE1. On the other hand, radiation-enhanced binding of both p53 and RelA was observed in a putative regulatory region of the RRAD gene whose expression was downregulated both by TP53 and RELA silencing, which suggested a possibility of direct (co)activation by both factors.ConclusionsFour new candidates for genes directly co-regulated by NF-κB and p53 were revealed.
Project description:Ras-related associated with diabetes (RRAD) is a small Ras-related GTPase that is frequently inactivated by DNA methylation of the CpG island in its promoter region in cancer tissues. However, the role of the methylation-induced RRAD inactivation in tumorigenesis remains unclear. In this study, the Ras regulated-transcriptome and epigenome were profiled by comparing T29H (a RasV12-transformed human ovarian epithelial cell line) with T29 (an immortalized but non-transformed cell line) through Reduced representation bisulfite sequencing (RRBS-seq) and Digital gene expression (DGE) . We found that RasV12-mediated oncogenic transformation was accompanied by RRAD promoter hypermethylation and a concomitant loss of RRAD expression. In addition, we found that the RRAD promoter was hypermethylated and its transcription was reduced in ovarian cancer versus normal ovarian tissues. Treatment with the DNA methyltransferase inhibitor 5-aza-2′-deoxycytidine (5-aza-dC) resulted in demethylation in RRAD promoter and restored RRAD expression in T29H cells. By employing knockdown and overexpression techniques in T29 and T29H, respectively, we found that RRAD inhibited glucose uptake and lactate production by repressing the expression of glucose transporters. Finally, RRAD overexpression in T29H cells inhibited tumor formation in nude mice, suggesting RRAD is a tumor suppressor gene. Our results indicate that RasV12-mediated oncogenic transformation induces RRAD epigenetic inactivation, which in turn promotes glucose uptake and may contribute to ovarian cancer tumorigenesis
Project description:Ras-related associated with diabetes (RRAD) is a small Ras-related GTPase that is frequently inactivated by DNA methylation of the CpG island in its promoter region in cancer tissues. However, the role of the methylation-induced RRAD inactivation in tumorigenesis remains unclear. In this study, the Ras regulated-transcriptome and epigenome were profiled by comparing T29H (a RasV12-transformed human ovarian epithelial cell line) with T29 (an immortalized but non-transformed cell line) through Reduced representation bisulfite sequencing (RRBS-seq) and Digital gene expression (DGE) . We found that RasV12-mediated oncogenic transformation was accompanied by RRAD promoter hypermethylation and a concomitant loss of RRAD expression. In addition, we found that the RRAD promoter was hypermethylated and its transcription was reduced in ovarian cancer versus normal ovarian tissues. Treatment with the DNA methyltransferase inhibitor 5-aza-2′-deoxycytidine (5-aza-dC) resulted in demethylation in RRAD promoter and restored RRAD expression in T29H cells. By employing knockdown and overexpression techniques in T29 and T29H, respectively, we found that RRAD inhibited glucose uptake and lactate production by repressing the expression of glucose transporters. Finally, RRAD overexpression in T29H cells inhibited tumor formation in nude mice, suggesting RRAD is a tumor suppressor gene. Our results indicate that RasV12-mediated oncogenic transformation induces RRAD epigenetic inactivation, which in turn promotes glucose uptake and may contribute to ovarian cancer tumorigenesis
Project description:Ras-related associated with diabetes (RRAD) is a small Ras-related GTPase that is frequently inactivated by DNA methylation of the CpG island in its promoter region in cancer tissues. However, the role of the methylation-induced RRAD inactivation in tumorigenesis remains unclear. In this study, the Ras regulated-transcriptome and epigenome were profiled by comparing T29H (a RasV12-transformed human ovarian epithelial cell line) with T29 (an immortalized but non-transformed cell line) through Reduced representation bisulfite sequencing (RRBS-seq) and Digital gene expression (DGE) . We found that RasV12-mediated oncogenic transformation was accompanied by RRAD promoter hypermethylation and a concomitant loss of RRAD expression. In addition, we found that the RRAD promoter was hypermethylated and its transcription was reduced in ovarian cancer versus normal ovarian tissues. Treatment with the DNA methyltransferase inhibitor 5-aza-2?-deoxycytidine (5-aza-dC) resulted in demethylation in RRAD promoter and restored RRAD expression in T29H cells. By employing knockdown and overexpression techniques in T29 and T29H, respectively, we found that RRAD inhibited glucose uptake and lactate production by repressing the expression of glucose transporters. Finally, RRAD overexpression in T29H cells inhibited tumor formation in nude mice, suggesting RRAD is a tumor suppressor gene. Our results indicate that RasV12-mediated oncogenic transformation induces RRAD epigenetic inactivation, which in turn promotes glucose uptake and may contribute to ovarian cancer tumorigenesis DGE-seq data for two cell lines (T29 and T29H) by were generated by deep sequencing using Illumina GAIIx.
Project description:Ras-related associated with diabetes (RRAD) is a small Ras-related GTPase that is frequently inactivated by DNA methylation of the CpG island in its promoter region in cancer tissues. However, the role of the methylation-induced RRAD inactivation in tumorigenesis remains unclear. In this study, the Ras regulated-transcriptome and epigenome were profiled by comparing T29H (a RasV12-transformed human ovarian epithelial cell line) with T29 (an immortalized but non-transformed cell line) through Reduced representation bisulfite sequencing (RRBS-seq) and Digital gene expression (DGE) . We found that RasV12-mediated oncogenic transformation was accompanied by RRAD promoter hypermethylation and a concomitant loss of RRAD expression. In addition, we found that the RRAD promoter was hypermethylated and its transcription was reduced in ovarian cancer versus normal ovarian tissues. Treatment with the DNA methyltransferase inhibitor 5-aza-2M-bM-^@M-2-deoxycytidine (5-aza-dC) resulted in demethylation in RRAD promoter and restored RRAD expression in T29H cells. By employing knockdown and overexpression techniques in T29 and T29H, respectively, we found that RRAD inhibited glucose uptake and lactate production by repressing the expression of glucose transporters. Finally, RRAD overexpression in T29H cells inhibited tumor formation in nude mice, suggesting RRAD is a tumor suppressor gene. Our results indicate that RasV12-mediated oncogenic transformation induces RRAD epigenetic inactivation, which in turn promotes glucose uptake and may contribute to ovarian cancer tumorigenesis Reduced representation bisulfite sequencing (MspI,~40-220bp size fraction) data for two cell lines (T29 and T29H) were generated by deep sequencing, in two replicates, using Illumina HiSeq 2000.
Project description:Aryl hydrocarbon receptor (AHR) activation by tryptophan (Trp) catabolites enhances tumor malignancy and suppresses anti-tumor immunity. Hitherto, indoleamine-2,3-dioxygenase 1 (IDO1) or tryptophan- 2, 3-dioxygenase (TDO2) are recognized as the main Trp-catabolizing enzymes (TCEs) responsible for the generation of AHR agonists. Here, the ability of the aromatic L-amino acid oxidase, interleukin 4 induced 1 (IL4I1), to activate the AHR was investigated using IL4I1 knockout CAS-1 glioblastoma cells.
Project description:To determine the function of Serpine1 in alveolar cells, the Serpine1 overexpression plasmid pCI-neo-Serpine1 was constructed and transfected into MLE-12 cells