Project description:Demosponge Cinachyrella cf cavernosa is an inter-tidal sponge. It is found in competition with soft coral Zoanthus sansibaricus and macroalgae Dictyota ciliatum. The effect of these two spatial competitors on the gene expression profile of the sponge is checked. Sponges are collected from three distinct situations, 1. sponge without competitors, 2. sponge in competition with algae, and 3. sponge in competition with soft coral. Each group has three biological replicates.
Project description:Coral reef sponges efficiently take up particulate and dissolved organic matter (DOM) from the water column and release compounds such as nucleosides, amino acids, and other dissolved metabolites to the surrounding reef via their exhalent seawater, but the influence of this process on reef picoplankton and nutrient processing is relatively unexplored. Here we examined the impact of sponge exhalent on the reef picoplankon community and subsequent alterations to the reef dissolved metabolite pool. We exposed reef picoplankton communities to a sponge exhalent water mixture (Niphates digitalis and Xestospongia muta) or filtered reef seawater (control) in closed, container-based dark incubations. We used 16S rRNA gene sequencing and flow cytometry-based cell counts to examine the picoplankton community and metabolomics and other analyses to examine the dissolved metabolite pool. The initial sponge exhalent was enriched in adenosine, inosine, chorismate, humic-like and amino acid-like components, and ammonium. Following 48 h of exposure to sponge exhalent, the picoplankton differed in composition, were reduced in diversity, showed doubled (or higher) growth efficiencies, and harbored increased copiotrophic and denitrifying taxa (Marinomonas, Pontibacterium, Aliiroseovarius) compared to control, reef-water based incubations. Alongside these picoplankton alterations, the sponge treatments, relative to seawater controls, had decreased adenosine, inosine, tryptophan, and ammonium, metabolites that may support the observed higher picoplankton growth efficiencies. Sponge treatments also had a net increase in several monosaccharides and other metabolites including anthranilate, riboflavin, nitrite, and nitrate. Our work demonstrates a link between sponge exhalent-associated metabolites and the picoplankton community, with exhalent water supporting an increased abundance of efficient, copiotrophic taxa that catabolize complex nutrients. The copiotrophic taxa were often different from those observed in previous algae and coral studies. These results have implications for better understanding the multifaceted role of sponges on picoplankton biomass with subsequent potential impacts to coral and other planktonic feeders in oligotrophic reef environments.
Project description:Publication Abstract: As climate changes, sea surface temperature anomalies that negatively impact coral reef organisms continue to increase in frequency and intensity. Yet, despite widespread coral mortality, genetic diversity remains high even in those coral species listed as threatened. While this is good news in many ways it presents a challenge for the development of biomarkers that can identify resilient or vulnerable genotypes. Taking advantage of three coral restoration nurseries in Florida that serve as long-term common garden experiments, we exposed over thirty genetically distinct Acropora cervicornis colonies to hot and cold temperature shocks seasonally and measured pooled gene expression responses using RNAseq. Targeting a subset of twenty genes, we designed a high-throughput qPCR array to quantify expression in all individuals separately under each treatment with the goal of identifying predictive and/or diagnostic thermal stress biomarkers. We observed extensive transcriptional variation in the population, suggesting abundant raw material is available for adaptation via natural selection. However, this high variation made it difficult to correlate gene expression changes with colony performance metrics such as growth, mortality, and bleaching susceptibility. Nevertheless, we identified several promising diagnostic biomarkers for acute thermal stress that may improve coral restoration and climate change mitigation efforts in the future.
Project description:Background Coral reefs are expected to be severely impacted by rising seawater temperatures associated with climate change. This study used cDNA microarrays to investigate transcriptional effects of thermal stress in embryos of the coral Montastraea faveolata. Embryos were exposed to 27.5C, 29.0C, and 31.5C directly after fertilization. Differences in gene expression were measured after 12 and 48 hours. Results Analysis of differentially expressed genes indicated that increased temperatures may lead to oxidative stress, apoptosis, and a structural reconfiguration of the cytoskeletal network. Metabolic processes were downregulated, and the action of histones and zinc finger-containing proteins may have played a role in the long-term regulation upon heat stress. Conclusions Embryos responded differently depending on exposure time and temperature level. Embryos showed expression of stress-related genes already at a temperature of 29.0C, but seemed to be able to counteract the initial response over time. By contrast, embryos at 31.5C displayed continuous expression of stress genes. The genes that played a role in the response to elevated temperatures consisted of both highly conserved and coral-specific genes. These genes might serve as a basis for research into coral-specific adaptations to stress responses and global climate change.
Project description:Abstract Ocean warming elevates metabolic rates in marine ectotherms but often constrains energetic resources, causing an imbalance between supply and demand. Transient hypoxia is near-ubiquitous across the world’s coral reefs and may exacerbate this imbalance, yet its effects on the energetics of reef fishes remain poorly understood. In this study, we assess the metabolic costs incurred by a cryptobenthic reef fish exposed to oxygen fluxes measured on the world’s hottest coral reefs in the Arabian/Persian Gulf. Hypoxia-exposure induced an 8.67% increase in aerobic metabolic rate over the six hours following reoxygenation, and resulted in an estimated 2.87% increase in total daily metabolic rate (mg O2 kg -1 day-1). This energetic cost did not coincide with detectable changes in anaerobic metabolism but was accompanied by increased activity during reoxygenation and a strong, acute transcriptomic response in genes related to oxygen-sensing. Oxygen availability on the reefs declined below the threshold for inducing such energetic costs on over half (56.04%) of the days throughout the summer, potentially leading to substantial cumulative costs. Such energetic costs represent an additional and previously under-appreciated consequence of hypoxia in coral reef environments that may exacerbate the temperature-induced mismatches between energy supply and demand, a key balance affecting growth and fitness.
Project description:Since the discovery of Chromera velia as a novel coral-associated microalga, this organism has attracted interest because of its unique evolutionary position between the photosynthetic dinoflagellates and the parasitic apicomplexans. The nature of the relationship between Chromera and its coral host is controversial. Is it a mutualism, from which both participants benefit, or is Chromera a parasite, harming its host? To better understand the interaction, larvae of the common Indo-Pacific reef-building coral Acropora digitifera were experimentally infected with Chromera and the impact on the host transcriptome assessed at 4, 12, and 48 h post-infection using Illumina RNA-Seq technology. The transcriptomic response of the coral to Chromera was complex and implies that host immunity is strongly suppressed, and both phagosome maturation and the apoptotic machinery modified. These responses differ markedly from those described for infection with a competent strain of the coral symbiont Symbiodinium, instead resembling those of vertebrate hosts to parasites and/or pathogens such as Mycobacterium tuberculosis. Consistent with ecological studies suggesting that the association may be accidental, the transcriptional response of A. digitifera larvae leads us to conclude that Chromera is more likely to be a coral parasite, commensal, or accidental bystander, but certainly not a beneficial mutualist
Project description:Short title: Coral Meta-Transcriptomics Reveal Pollutant Stress Background: Corals represent symbiotic meta-organisms that require harmonization among the coral animal, photosynthetic zooxanthellae and associated microbes to survive environmental stresses. We investigated integrated-responses among coral and zooxanthellae in the scleractinian coral Acropora formosa in response to an emerging marine pollutant, the munitions constituent, 1,3,5-trinitro-1,3,5 triazine (RDX; 5 day exposures to 0 (control), 0.5, 0.9, 1.8, 3.7, and 7.2 mg/L, measured in seawater). Results: RDX accumulated readily in coral soft tissues with bioconcentration factors ranging from 1.1 to 1.5). Next-generation sequencing of a normalized meta-transcriptomic library developed for the eukaryotic components of the A. formosa coral holobiont was leveraged to conduct microarray-based global transcript expression analysis of integrated coral / zooxanthellae responses to the RDX exposure. Total differentially expressed transcripts (DET) increased with increasing RDX exposure concentrations as did the proportion of zooxanthellae DET relative to the coral animal. Transcriptional responses in the coral demonstrated higher sensitivity to RDX compared to zooxanthellae where increased expression of gene transcripts coding xenobiotic detoxification mechanisms (ie. cytochrome P450 and UDP glucuronosyltransferase 2) were initiated at the lowest exposure concentration. Increased expression of these detoxification mechanisms was sustained at higher RDX concentrations as well as production of a physical barrier to exposure through a 40% increase in mucocyte density at the maximum RDX exposure. At and above the 1.8 mg/L exposure concentration, DET coding for genes involved in central energy metabolism, including photosynthesis, glycolysis and electron-transport functions, were decreased in zooxanthellae although preliminary data indicated that zooxanthellae densities were not affected. In contrast, significantly increased transcript expression for genes involved in cellular energy production including glycolysis and electron-transport pathways was observed in the coral animal. Conclusions: Transcriptional network analysis for central energy metabolism demonstrated highly correlated responses to RDX among the coral animal and zooxanthellae indicative of potential compensatory responses to lost photosynthetic potential within the holobiont. These observations underscore the potential for complex integrated responses to RDX exposure among species comprising the coral holobiont and highlight the need to understand holobiont-species interactions to accurately assess pollutant impacts.
Project description:Coral reefs are based on the symbiotic relationship between corals and photosynthetic dinoflagellates of the genus Symbiodinium. We followed gene expression of coral larvae of Acropora palmata and Montastraea faveolata after exposure to Symbiodinium strains that differed in their ability to establish symbioses. We show that the coral host transcriptome remains almost unchanged during infection by competent symbionts, but is massively altered by symbionts that fail to establish symbioses. Our data suggest that successful coral-algal symbioses depend mainly on the symbionts' ability to enter the host in a stealth manner rather than a more active response from the coral host.
Project description:Purpose: There is a dearth of knowledge regarding the molecular pathology of growth anomaly in corals. We investigated the gene expression profile of Montipora capitata metatranscriptomes from healthy and diseased (growth anomaly) coral colonies to elucidate differentially expressed genes. Methods: mRNA profiles of coral tissue (including symbionts) were generated from three different tissue states: healthy, affected and unaffected. Healthy tissue was collected from coral colonies not affected by growth anomaly. Affected tissue was collected from coral growth anomaly lesions. Unaffected tissue was collected from coral colonies affected by growth anomaly.