Project description:Objective: Adult Still’s disease (ASD) is a systemic disorder of unknown etiology characterized by high spiking fever, rash and arthritis. The purpose of this study was to determine the pathogenic roles of specific genes in ASD. Methods: Differentially expressed genes (DEGs) were examined by DNA microarray and validated by quantitative PCR using monocytes isolated from patients with active-ASD, inactive-ASD and healthy controls. The correlation between validated DEGs and ASD activity was analyzed. After inflammasome activation with LPS and Nigericin, the production of IL-1β, IL-18, inflammasome and autophagy related proteins in DEGs-overexpressing THP-1 cells was carried out by ELISA or western blotting. DEGs-overexpressing THP-1 cells were treated with an inhibitor of autophagy followed by assessment of IL-1β and IL-18 production by ELISA and western blotting method.Conclusions: The overexpression of PLAC8 in monocytes might play a regulatory role in the production of IL-1β and IL-18 by the enhancement of autophagy, resulting in the suppression of ASD. Results:A total of 68 genes were highly expressed in monocytes isolated from active-ASD patients, relative to their expression in inactive-ASD patients and healthy controls. After validation of expression of 13 genes (CLU, FCGR1B, PLAC8, TLR1, S100A12, CD55, PIM1, BCL2A1, SOD2, PLSCR1, CYP1B1, STEAP4, IL1RN), the expression of PLAC8 was significantly higher in active-ASD patients than the other groups. In ASD, PLAC8 expression level correlated with serum levels of CRP, ferritin and IL-18. Stimulation of monocytes with lipopolysaccharide resulted in PLAC8 upregulation. LPS or Nigericin stimulation of PLAC8-overexpressing THP-1, but not THP-1 cells< was associated with significant decrease in IL-1β and IL-18 production. PLAC8 overexpressing in THP-1 cells was associated with enhanced autophagy and suppression of IL-1β and IL-18 production. Conclusions: PLAC8 upregulation in monocytes seemed to play a regulatory role in the production of IL-1β and IL-18 through enhanced autophagy, resulting in suppression of ASD. The results highlight the role of PLAC8 in the pathogenesis of ASD and suggest its potential suitability as a therapeutic target in ASD.
Project description:We used a microarray to compare bulk gene expression differences between ASD+/+ and ASD+/- tumor stroma. We observed enrichment for neutrophil transcripts in ASD+/- stroma compared to ASD+/+
Project description:Active HUMSC with distinct binding rate to MDA MB-231 breast cancer cells, distinct ability in suppressing tumorigenesis,distinct cell in cell features and distinct features under TEM then inactive HUMSC We used microarrays to detail the difference gene expression between active HUMSC and inactive HUMSC HUMSC with high MDA MB-231 breast cancer cells suppression rate was selective as active HUMSC and HUMSC with low MDA MB-231 breast cancer cells suppression rate was selective as inactive HUMSC
Project description:Active HUMSC with distinct binding rate to MDA MB-231 breast cancer cells, distinct ability in suppressing tumorigenesis,distinct cell in cell features and distinct features under TEM then inactive HUMSC We used microarrays to detail the difference gene expression between active HUMSC and inactive HUMSC
Project description:Biopsies from six individuals of each of the categories active CD (CDA), inactive CD (CD) and healthy controls (N) were analyzed for gene expression using microarray. The biopsies were obtained by ileo-colonoscopy and snap-frozen in nitrogen before RNA-isolation. A gastrointestinal pathologist classified the biopsies into normal, chronic active or chronic inactive inflammation based on Hematoxylin-Eosin stain of tissue sections from adjacent biopsies. Samples with discrepancy between endoscopic and histologic diagnoses were excluded from the final analysis, and uploaded with "NaN". The patients with chronic inactive inflammation all previously had verified CD of the terminal ileum. Patients coming to endoscopy for other reasons than IBD and with normal endoscopic and histological findings served as controls.
Project description:Austism spectrum disorder (ASD) is a heterogeneous behavioral disease most commonly characterized by severe impairment of social engagement and the presence of repetitive activities. The molecular etiology of ASD is still largely unknown despite a strong genetic component. Part of the difficulty in turning genetics into disease mechanisms and potentially new therapeutics is the sheer number and diversity of the genes that have been associated with ASD and ASD symptoms. The goal of this work is to use shRNA-generated models of genetic defects proposed as causative for ASD to identify the common pathways that might explain how they produce a common clinical outcome. Transcript levels of Mecp2, Mef2a, Mef2d, Fmr1, Nlgn1, Nlgn3, Pten, and Shank3 were knocked-down in mouse primary neuron cultures using shRNA/lentivirus constructs. Whole genome expression analysis was conducted for each of the knock-down cultures as well as a mock-transduced culture and a culture exposed to a lentivirus expressing luciferase. Gene set enrichment and a causal reasoning engine were employed to indentify pathway level perturbations generated by the transcript knock-down. Quantitation of the shRNA targets confirmed the successful knock-down at the transcript and protein levels of at least 75% for each of the genes. After subtracting out potential artifacts caused by transfection and viral infection, gene set enrichment and causal reasoning engine analysis showed that a significant number of gene expression changes mapped to pathways associated with neurogenesis, long-term potentiation, and synaptic activity. This work demonstrates that despite the complex genetic nature of ASD, there are common molecular mechanisms that connect many of the best established autism candidate genes. By identifying the key regulatory checkpoints in the interlinking transcriptional networks underlying autism, we are better able to discover the ideal points of intervention that provide the broadest efficacy across the diverse population of autism patients. n=4 per group. Luciferase shRNA used as control group for shRNA to various gene targets.
Project description:Autism Spectrum disorder (ASD) is a heterogeneous neurodevelopmental disorder where patients have impaired social behavior and communication, and restricted interests. Although various studies have been carried out to unveil the mechanisms associated with ASD, its pathophysiology is still poorly understood. Genetic variants on CNTNAP2 have been found and considered representative ASD genetic risk factors, and disruption of Cntnap2 causes ASD phenotypes in mice. Here, we performed an integrative multi-omics analysis by combining quantitative proteometabolomics data of Cntnap2 knockout (KO) mice with multi-omics data from ASD patients and forebrain organoids to elucidate Cntnap2-dependent molecular networks of ASD. First, we found Cntnap2-associated molecular signatures and cellular processes by conducting mass spectrometry-based proteometabolomic analysis of the medial prefrontal cortex of the Cntnap2 KO mouse model. Then, we narrowed these identified processes into bona fide ASD molecular processes by incorporating multi-omics data of ASD patients' prefrontal cortex. Further, we mapped cell-type-specific ASD networks by reanalyzing single-cell RNA-seq data of forebrain organoids derived from patients with CNTNAP2 mutation. Finally, we constructed a Cntnap2-associated ASD network model consisting of mitochondrial dysfunction, axonal impairment, and synaptic activity. Our results may shed light on understanding of the Cntnap2-dependent molecular networks of ASD.
Project description:The spatial organization of DNA in the cell nucleus is an emerging key contributor to genomic function. We have developed 4C technology, or 3C-on-chip, which allows for an unbiased genome-wide search for DNA loci that contact a given locus in the nuclear space. We demonstrate here that active and inactive genes are engaged in many long-range intrachromosomal interactions and can also form interchromosomal contacts. The active b-globin locus in fetal liver contacts mostly transcribed, but not necessarily tissue-specific, loci elsewhere on chromosome 7, while the inactive locus in fetal brain contacts different, transcriptionally silent, loci. A housekeeping gene in a gene dense region on chromosome 8 forms long-range contacts predominantly with other active gene clusters, both in cis and in trans, and many of these intra- and interchromosomal interactions are conserved between the tissues analyzed. Our data demonstrate that chromosomes fold into areas of active chromatin and areas of inactive chromatin and establish 4C technology as a powerful tool to study nuclear architecture. Keywords: 4C technology