Project description:Gene-expression divergence between species shapes morphological evolution, but the molecular basis is largely unknown. Here we show cis- and trans-regulatory elements and chromatin modifications on gene-expression diversity in genetically tractable Arabidopsis allotetraploids. In Arabidopsis thaliana and Arabidopsis arenosa, both cis and trans with predominant cis-regulatory effects mediate gene-expression divergence. The majority of genes with both cis- and trans-effects are subjected to compensating interactions and stabilizing selection. Interestingly, chromatin modifications correlate with cis - and trans -regulation. In F1 allotetraploids, Arabidopsis arenosa trans factors predominately affect allelic expression divergence. Arabidopsis arenosa trans factors tend to upregulate Arabidopsis thaliana alleles, whereas Arabidopsis thaliana trans factors up- or down-regulate Arabidopsis arenosa alleles. In resynthesized and natural allotetraploids, trans effects drive expression of both homoeologous loci into the same direction. We provide evidence for natural selection and chromatin regulation in shaping gene-expression diversity during plant evolution and speciation. Examination of gene expression in 5 tetraploid Arabidopsis using mRNA-seq
Project description:Mechanism, inheritance patterns and biological significance remain unclear. Here, we generated genome-wide integrated maps of H3K27me3 modification and transcriptome for Col, C24 and their F1 hybrid, and their clf mutants. We found that H3K27me3 modification profiles were divergent between Col and C24, and were inherited mainly additively in hybrid. By comparing H3K27me3 modification ratio between parents to allelic H3K27me3 modification ratio in hybrid, we identified cis- and trans-regulatory divergence for H3K27me3 modification variation between Col and C24, and found that cis-regulatory divergence was the predominant contributor to H3K27me3 variation. The majority of genes with both cis- and trans-regulatory divergence displayed "cis-trans" interaction, whereas "cis+trans" interaction resulted in higher magnitude of H3K27me3 variation. H3K27me3 modification variation was negatively correlated with gene expression variation between Col and C24, both of which might rise from the same cis-regulatory divergence. Moreover, cis-regulatory divergence could lead to the concurrent allelic H3K27me3 modification bias and allelic gene expression bias for auxin metabolic genes and stimulus responsive genes in Col×C24 hybrid. Natural variation of H3K27me3 modification and gene expression were changed upon CLF mutation, and heterosis, especially best-parent hetereosis, was largely compromised in clf hybrid. Together, our study provided a comprehensive analysis of regulatory divergence for natural variation of histone modification and its association with differential gene expression between Arabidopsis accessions and growth vigor in hybrid.
Project description:Gene-expression divergence between species shapes morphological evolution, but the molecular basis is largely unknown. Here we show cis- and trans-regulatory elements and chromatin modifications on gene-expression diversity in genetically tractable Arabidopsis allotetraploids. In Arabidopsis thaliana and Arabidopsis arenosa, both cis and trans with predominant cis-regulatory effects mediate gene-expression divergence. The majority of genes with both cis- and trans-effects are subjected to compensating interactions and stabilizing selection. Interestingly, chromatin modifications correlate with cis - and trans -regulation. In F1 allotetraploids, Arabidopsis arenosa trans factors predominately affect allelic expression divergence. Arabidopsis arenosa trans factors tend to upregulate Arabidopsis thaliana alleles, whereas Arabidopsis thaliana trans factors up- or down-regulate Arabidopsis arenosa alleles. In resynthesized and natural allotetraploids, trans effects drive expression of both homoeologous loci into the same direction. We provide evidence for natural selection and chromatin regulation in shaping gene-expression diversity during plant evolution and speciation.
Project description:We generated F1 hybrids of each of the sister species A. halleri and A. lyrata with their outgroup relative of A. thaliana and monitored allele-specific levels of expression in standard growth conditions, in response to dehydration or cold exposure. This data allowed us to map the genome-wide distribution of cis-regulatory mutations active in three distinct environments reflecting divergent adaptations of the two species. Because the sister species were both crossed to an outgroup species, it was possible to assign a phylogenetic origin to cis-acting mutations. Cis-acting mutations observed in only one of the two hybrids were likely to be derived, whereas those observed in both hybrids either predate predated the split between the two species or arose along the A. thaliana lineage. By contrasting the distribution of cis-regulatory mutations derived in the A. halleri to those derived on the A. lyrata lineage, we could establish relative rates of cis-acting evolution across polygenic molecular functions and detect lineage-specific polygenic adaptation to environmental challenges. A.thalianaxA.lyrata under cold, dehydration and standard conditions, 3 biological replicates; A.thalianaxA.halleri under cold, dehydration and standard conditions, 3 biological replicates; toal 18 RNA-seq samples
Project description:Alternative splicing (AS) plays key roles in plant development and responses to environmental changes. However, the mechanisms underlying AS divergence (differential expression of transcript isoforms resulting from alternative splicing) in plant accessions and its contributions to responses to environmental stimuli remain unclear. In this study, we investigated genome-wide variation of AS in Arabidopsis thaliana accessions Col-0, Bur-0, C24, Kro-0, and Ler-1, as well as their F1 hybrids, and characterized the regulatory mechanisms for AS divergence by RNA sequencing (RNA-seq). We found that most of the divergent AS events in Arabidopsis accessions were cis-regulated by sequence variation, including those in core splice site and splicing motifs. Many genes that differed in AS between Col-0 and Bur-0 were involved in stimulus responses. Further genome-wide association analyses of 22 environmental variables showed that SNPs influencing known splice site strength were also associated with environmental stress responses. These results demonstrate that cis-variation in genomic sequences among Arabidopsis accessions was the dominant contributor to AS divergence, and it may contribute to differences in environmental responses among Arabidopsis accessions.
Project description:We investigated genome-wide variation in AS in Arabidopsis thaliana accessions Col and Ler using RNA-seq. We identified many cis-regulatory elements associated with AS events, among which polypyrimidine tracts (e.g., UCUCUC and CUCUCU) were significantly overrepresented, especially in the exons upstream of each AS event. We found that variation in cis-regulatory element sequences contributed to divergence in AS levels, but not to differential gene transcription between the two Arabidopsis accessions.
Project description:We generated F1 hybrids of each of the sister species A. halleri and A. lyrata with their outgroup relative of A. thaliana and monitored allele-specific levels of expression in standard growth conditions, in response to dehydration or cold exposure. This data allowed us to map the genome-wide distribution of cis-regulatory mutations active in three distinct environments reflecting divergent adaptations of the two species. Because the sister species were both crossed to an outgroup species, it was possible to assign a phylogenetic origin to cis-acting mutations. Cis-acting mutations observed in only one of the two hybrids were likely to be derived, whereas those observed in both hybrids either predate predated the split between the two species or arose along the A. thaliana lineage. By contrasting the distribution of cis-regulatory mutations derived in the A. halleri to those derived on the A. lyrata lineage, we could establish relative rates of cis-acting evolution across polygenic molecular functions and detect lineage-specific polygenic adaptation to environmental challenges.