Project description:Bone marrow mesenchymal stem cells (BMSCs) differentiate into various mature cell types, including adipocytes and osteoblasts, which is determined by genetic, molecular mediators and local microenvironment. With age, BMSCs become inclined to undergo differentiation into adipocytes rather than osteoblasts, resulting in an increased number of adipocytes and a decreased number of osteoblasts, causing osteoporosis. The dysregulated the gene expression in BMSCs during aging were analyzed. We used microarrays to detail the global programme of gene expression duing aing in BMSCs.
Project description:Young and Aged osteocytes in bone matrix secreted plenty of extracellular vesicles (EVs) with different functions. We found that EVs released from aged bone matrix (AB-EVs) during bone resorption favor adipogenesis rather than osteogenesis of BMSCs and augment calcification of vascular smooth muscle cells (VSMCs). In this work, we aim to detect the differential regulation microRNAs. Vascular calcification often occurs with osteoporosis, a contradictory association called “calcification paradox”. We find that extracellular vesicles (EVs) released from aged bone matrix (AB-EVs) during bone resorption favor adipogenesis rather than osteogenesis of BMSCs and augment calcification of vascular smooth muscle cells (VSMCs). Intravenous or intramedullary injection of AB-EVs promotes bone-fat imbalance and exacerbates Vitamin D3 (VD3)-induced vascular calcification in young or old mice. To explore the involvement of miRNAs in the AB-EVs-induced promotion of adipocyte formation and vascular calcification, the Agilent miRNA array was conducted to compare the miRNA expression profiles in AB-EVs and YB-EVs from mouse bone specimens. Our study uncovers the role of AB-EVs as a messenger for calcification paradox by transferring functional miRNAs.
Project description:We report the gene expression changes in mobilized peripheral blood in aged, young, and aged/young samples cocultured in transwell. Restored samples refer to aged MPB co-cultured with young MPB in the transwell culture
Project description:Dendritic cells (DCs) are major antigen-presenting cells that play a key role in initiating and regulating innate and adaptive immune responses. DCs are critical mediators of tolerance and immunity. The functional properties of DCs changes with age. The purpose of this study was to define the age-associated molecular changes in DCs by gene array analysis using Affymatrix GeneChips. We identified up and down-regulated gene expression changes in DC from aged donors compared to young donors. Total 9 MoDC RNA samples from four young donors (20-27 years) and five aged donors (77-84 years) were analyzed using Affymetrix HG-U133A_2 Gene Arrays to compare differential gene expression changes in MoDC between aged and young groups
Project description:Vascular calcification often occurs with osteoporosis, a contradictory association called “calcification paradox”. We find that extracellular vesicles (EVs) released from aged bone matrix (AB-EVs) during bone resorption favor adipogenesis rather than osteogenesis of BMSCs and augment calcification of vascular smooth muscle cells (VSMCs). Intravenous or intramedullary injection of AB-EVs promotes bone-fat imbalance and exacerbates Vitamin D3 (VD3)-induced vascular calcification in young or old mice. To explore the involvement of miRNAs in the AB-EVs-induced promotion of adipocyte formation and vascular calcification, the Agilent miRNA array was conducted to compare the miRNA expression profiles in AB-EVs and YB-EVs from mouse bone specimens. Our study uncovers the role of AB-EVs as a messenger for calcification paradox by transferring functional miRNAs.
Project description:We report the miRNA expression in each CD34+ cells and their exosomes in mobilized peripheral blood in aged, young, and aged/young samples cocultured in transwell. Restored samples refer to aged MPB co-cultured with young MPB in the transwell culture.
Project description:The origin and nature of recently discovered age-associated B cells (ABCs) is under investigation. We used a microarray to examine the transcriptional signatures of ABCs, follicular B cells from aged mice (AFO), and follicular B cells from young mice (YFO).