Project description:Tall fescue (Festuca arundinacea Schreb.) is a commonly used herbaceous species for slope ecological restoration in China. However, water scarcity often constrains its growth due to the unique site conditions of steep slopes and climate-induced drought stress. This study aims to compare the ameliorative effects of silicon nanoparticles (Si NPs) and cellulose nanocrystals (CNCs) on drought stress in tall fescue, and to elucidate their underlying mechanisms of action. The results indicated that drought stress impaired photosynthesis, restricted nutrient absorption, and increased oxidative stress, ultimately reducing biomass. However, Si NPs and CNCs enhanced drought tolerance and promoted biomass accumulation by improving photosynthesis, osmotic regulation, and antioxidant defense mechanisms. Specifically, Si NP treatment increased biomass by 48.71% compared to drought-stressed control plants, while CNCs resulted in a 33.41% increase. Transcriptome sequencing further revealed that both nanomaterials enhanced drought tolerance by upregulating genes associated with photosynthesis and antioxidant defense. Additionally, Si NPs improved drought tolerance by stimulating root growth, enhancing nutrient uptake, and improving leaf structure. In contrast, CNCs play a distinct role by regulating the expression of genes related to cell wall synthesis and metabolism. These findings highlight the crucial roles of these two nanomaterials in plant stress protection and offer a sustainable strategy for the maintenance and management of slope vegetation.
Project description:Frost tolerance is the main component of winter-hardiness. To express this trait, plants have to sense low temperature, and respond by activating the process of cold acclimation. The molecular mechanisms of this acclimation have not been fully understood in the agronomically important group of forage grasses, including Lolium-Festuca species. Herein, the introgression forms of L. multiflorum/F. arundinacea distinct with respect to their frost tolerance, were used as models for the comprehensive, proteomic and physiological, research to recognize the crucial components of cold acclimation in forage grasses. The obtained results stressed the importance of photosynthetic performance under acclimation to low temperature. The stable level of photochemical processes after three weeks of cold acclimation in the introgression form with a higher level of frost tolerance, combined simultaneously with the stable level of CO2 assimilation after that period, despite decreased stomatal conductance, indicated the capacity for that form to acclimate its photosynthetic apparatus to low temperature. This phenomenon was driven by the Calvin cycle efficiency, associated with revealed here accumulation profiles and activities of chloroplastic aldolase. The capacity to acclimate the photosynthetic machinery to cold could be one of the most crucial components of forage grass metabolism to improve frost tolerance.
Project description:Festuca species, Falcon was grown in greenhouse in two replications for control and different dose applications of glyphosate. Plants were sprayed with two different rates (5% and 20%) of isopropylamine salt of glyphosate at three leaf stage. Affymetrix Wheat Genome array was used for transcriptional profiling.