Project description:Chemical contamination is a common threat to biota thriving in estuarine and coastal ecosystems. In particular, trace metals tend to accumulate and exert deleterious effects on small invertebrates such as zooplankton, which are essential trophic links between phytoplankton and higher-level consumers in aquatic food webs. Beyond the direct effects of the contamination, we hypothesized that metal exposure could also affect the zooplankton microbiota, which in turn might further impair host fitness. To assess this assumption, copepods (Eurytemora affinis) were sampled in the oligo-mesohaline zone of the Seine estuary and exposed to dissolved copper (25 µg.L-1) over a 72-hour time period. Copepod response to copper treatment was assessed by determining transcriptomic changes in E. affinis along with shifts in its microbiota. Unexpectedly, very few genes were differentially expressed in copper-treated copepods compared to controls, with most of the reported differences involving genes upregulated in males compared to females. In contrast, copper increased the taxonomic diversity indices of the microbiota and resulted in substantial compositional changes at both the phyla and genus levels. Phylogenetic reconstruction of the microbiota further suggested that copper mitigated phylogenetic relatedness of taxa at the basal tree structure of the phylogeny, whereas it strengthened it at the terminal branches. Increased terminal phylogenetic clustering in copper-treated copepods concurred with higher proportions of bacterial genera previously identified as copper resistant (e.g., Pseudomonas, Acinetobacter, and Alkanindiges) and a higher relative abundance of the copA gene encoding a periplasmic inducible multi-copper oxidase. Overall, these results revealed very contrasting responses of E. affinis and its microbiota to copper exposure. The enrichment in micro-organisms likely to perform copper sequestration and/or enzymatic transformation processes, underlines here the need to follow the microbial component during the evaluation of the vulnerability of the zooplankton to the metallic stress.
2023-06-29 | GSE212602 | GEO
Project description:Prokaryotic taxonomic diversity along a nutrient rich estuary
Project description:To characterize the taxonomic and functional diversity of biofilms on plastics in marine environments, plastic pellets (PE and PS, ø 3mm) and wooden pellets (as organic control) were incubated at three stations: at the Baltic Sea coast in Heiligendamm (coast), in a dead branch of the river Warnow in Warnemünde (inlet), and in the Warnow estuary (estuary). After two weeks of incubation, all pellets were frozen for subsequent metagenome sequencing and metaproteomic analysis. Biofilm communities in the samples were compared on multiple levels: a) between the two plastic materials, b) between the individual incubation sites, and c) between the plastic materials and the wooden control. Using a semiquantitative approach, we established metaproteome profiles, which reflect the dominant taxonomic groups as well as abundant metabolic functions in the respective samples.
Project description:Proteomics of livers from Platichthys flesus after encagement in the Seine estuary at day 15 and day 30 after the fire of the Lubrizol and NL-logistique plants in Rouen, France, and in a control estuary for describing key molecular players in response to industrial pollutants.
Project description:<p>Particulate organic matter (fecal pellets) from zooplankton has been demonstrated to be important nutrient sources for the pelagic prokaryotic community. Significantly less is known about the chemical composition of the dissolved organic matter (DOM) produced by these eukaryotes and its influence on pelagic ecosystem structure. Zooplankton migrators, which daily transport surface-derived compounds to depth, may act as important vectors of limiting nutrients for mesopelagic microbial communities. In this role, zooplankton may increase the DOM remineralization rate by heterotrophic prokaryotes through the creation of nutrient rich “hot spots” that could potentially increase niche diversity. To explore these interactions, we collected the migratory copepod Pleuromamma xiphias from the northwestern Sargasso Sea and sampled its excreta after 12-16 h of incubation. We measured bulk dissolved organic carbon, dissolved free amino acids via high performance liquid chromatography and dissolved targeted metabolites via quantitative mass spectrometry (UPLC-ESI-MSMS) to quantify organic zooplankton excreta production and characterize its composition. We observed production of labile DOM, including amino acids, vitamins and nucleosides. Additionally, we harvested a portion of the excreta and subsequently used it as the growth medium for mesopelagic (200m) bacterioplankton dilution cultures. In zooplankton excreta treatments we observed a four-fold increase in bacterioplankton cell densities that reached stationary growth phase after five days of dark incubation. Analyses of 16s rDNA amplicons suggested a shift from oligotrophs typical of open ocean and mesopelagic prokaryotic communities to more copiotrophic bacterial lineages in the presence of zooplankton excreta. These results support the hypothesis that zooplankton and prokaryotes are engaged in complex and indirect ecological interactions, broadening our understanding of the microbial loop.</p>
2020-11-27 | MTBLS1822 | MetaboLights
Project description:water microbiota along a large river estuary
| PRJNA647485 | ENA
Project description:Bacterial communities`structure and diversity of intertidal biofilms along Pearl River Estuary, South China.
| PRJNA484760 | ENA
Project description:Microbial diversity along the Somone estuary (Senegal) and implication of the sulfate-reducing-prokaryotes
Project description:In this study, microarrays were used to investigate the larval cod transcriptome response to zooplankton supplementation in the diet.